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AbstractProbabilistic, or randomized, algorithms are fast becoming as commonplace as con-ventional deterministic algorithms. This survey presents �ve techniques that havebeen widely used in the design of randomized algorithms. These techniques are il-lustrated using 12 randomized algorithms | both sequential and distributed | thatspan a wide range of applications, including: primality testing (a classical problem innumber theory), universal hashing (choosing the hash function dynamically and at ran-dom), interactive probabilistic proof systems (a new method of program testing), diningphilosophers (a classical problem in distributed computing), and Byzantine agreement(reaching agreement in the presence of malicious processors). Included with each al-gorithm is a discussion of its correctness and its computational complexity. Severalrelated topics of interest are also addressed, including the theory of probabilistic au-tomata, probabilistic analysis of conventional algorithms, deterministic ampli�cation,and derandomization of randomized algorithms. Finally, a comprehensive annotatedbibliography is given.Categories and Subject Descriptors: I.1.2 [Computing Methodologies]: Algorithms;F.1.2 [Computation by Abstract Devices]: Modes of Computation - ProbabilisticComputation; D.1 [Software]: Programming Techniques.General Terms: Randomized Algorithms; Probabilistic Techniques; Analysis of Algo-rithms.Additional Keywords and Phrases: Probabilistic Algorithms; Sequential and DistributedAlgorithms; Computational Complexity; Randomized Quicksort; Primality Testing;Transitive Tournaments; Hashing; Perfect Hashing; Universal Hashing; Nearest Neigh-bors Problem; Interactive Probabilistic Proof Systems; Graph Isomorphism; DiningPhilosophers Problem; CSP; Leader Election; Message Routing; Byzantine Agreement.3
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1 IntroductionWe examine the �eld of probabilistic algorithms, that is, algorithms containing statementsof the form: x := outcome of tossing a fair coinProbabilistic algorithms typically toss coins in order to make multi-way decisions so, ingeneral, the coins in question are n-sided. One of the goals of this survey is to illustrate theinteresting and powerful e�ects coin tossing can have on the behavior of algorithms.The action of tossing a coin is often implicit in a probabilistic algorithm and may takeon various guises. Actions such as \randomly select an item x from a set S", or \randomlychoose a process with which to communicate" are typical examples. Computationally, tossinga coin can be viewed as generating a random number between 1 and n. As such, the termrandomized algorithm is often used in the literature as a synonym for probabilistic algorithm,and so it shall be here. An algorithm not having any coin tossing statements is said to bedeterministic.Randomized algorithms entered the computer science spotlight with the publication ofMichael Rabin's seminal paper \Probabilistic Algorithms" [Rab76], although their existencecan be traced back much further [Sha92a]. Rabin's paper presented surprisingly e�cientrandomized algorithms for two well-known problems, Nearest Neighbors|a problem in com-putational geometry, and Primality Testing|the problem of determining whether a giveninteger is divisible by any number other than itself and one. The probabilistic algorithmof Solovay and Strassen [SS77, SS78], also for primality testing, is another celebrated resultin the �eld. A resurgence of interest in randomized algorithms occurred in the early 1980'swith the discovery of the important role randomization can play in distributed computing,e.g., [FR80, LR81, BO83].More recently, randomized algorithms have been the subject of an ACM Turing AwardLecture [Kar86], an ACM Distinguished Dissertation [Kil90], and of a number of surveysincluding [Wei78, Hop81, Wel83, Kro85, MSV85, Har87, Val87, BB88, Rag90, Kar90]. Oursurvey is closest in spirit to [Har87, Val87, BB88, Kar90] in its extensive coverage of bothsequential and distributed randomized algorithms.4
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A distinguishing aspect of our survey is the classi�cation we present in Section 1.1 of gen-eral techniques used in the design of randomized algorithms.2 In Section 1.2, we then identifycertain tradeo�s one may encounter in using these techniques. For example, the PrimalityTesting algorithm of [Rab76], which uses a technique we call \random search", outperformsall known deterministic algorithms for the problem, yet cannot, in general, guarantee abso-lutely that the answer produced is correct. We next present 12 randomized algorithms whichwe believe to be representative of the �eld; in the least, they collectively make use of thetechniques that we have presented. Seven of these algorithms are sequential (Section 2) and�ve are distributed (Section 3). Finally, in Section 4, we spotlight several remaining issuesin the �eld of randomized algorithms. A comprehensive annotated bibliography is included.The intended audience is one with a basic background in algorithm design and analysis,but not necessarily familiar with the use of probabilistic techniques in algorithm construction.Familiarity with an imperative, sequential programming language such as Pascal is assumed,as the algorithms are presented in pseudo code with a distinctive Pascal avor. The pseudocode makes use of control constructs such as REPEAT UNTIL, FOR, WHILE, and IF THENELSE for the sequential algorithms. For the distributed case, message passing constructs SENDand RECEIVE, as well as constructs for shared memory access, are added to the language.Their semantics are discussed in the introduction to Section 3.As previously mentioned, we survey both sequential and distributed randomized algo-rithms. In the sequential case, we examine:1. Sock Selection (SockSel)2. Primality Testing (PrimeTest)3. Networks without Large Hierarchies (NetHierarchy)4. Perfect Hashing (PerfHash)5. Universal Hashing (UnivHash)6. Nearest Neighbors (NearNeb)7. Graph Isomorphism Program Testing (GI-Verify)2Karp's recent and excellent survey [Kar90] contains a slightly di�erent classi�cation.5
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The distributed randomized algorithms we consider are:1. Dining Philosophers (DinPhil)2. Communication Guard Scheduling (CommGuard)3. Leader Election in a Ring (LeadElect)4. Message Routing in a Network (MsgRoute)5. Byzantine Agreement (ByzAgree)For each algorithm we briey de�ne the basic problem and, when appropriate, the modelof computation. We then explain why each algorithm is correct, and examine its computa-tional complexity. Only a limited amount of probability theory is required to understandthe correctness and complexity analyses, as our emphasis is on illustrating the techniquesinvolved rather than on providing formal proofs.To be able to cogently discuss the computational complexity of randomized algorithms,it is useful to �rst introduce several criteria for evaluating the performance of algorithms.Let A be a sequential algorithm with input I and output O. If A is deterministic, than anoft-used yardstick of A 's performance is its average running time: the average time taken byA when, for input I of a given size, each possible instance of I is considered equally likely.That is, a uniform distribution on inputs is assumed.For A a randomized algorithm, its running time on a �xed instance i of I may vary fromexecution to execution. Therefore, a more natural measure of performance is the expectedrunning time of A on a �xed instance i of I: the mean time taken by A to solve instance iover and over.In the randomized case, it is also useful to talk about the running time of A with highprobability or the running time of A that occurs almost surely. Let T (n) be a bound onthe running time of A on inputs of size n. The running time of A is said to be T (n)with high probability if A terminates in time T (n) with probability at least 1 � 1=n. Therunning time of A is said to be almost surely T (n) if the algorithm terminates in timeT (n) with probability at least 1 � 1=2nc , for some constant c > 0. In this survey, we haveopted, whenever possible, to give the exact expression for the termination probability of arandomized algorithm instead of using qualitative terms such as \with high probability" or\almost surely." 6
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These performance criteria can be applied to distributed algorithms as well. In this case,the quantities of interest include communication complexity, the total number and size ofmessages transmitted during the execution of a distributed algorithm; queueing delay, thetotal time spent by messages in message queues waiting to traverse in-use communicationlinks; and the total number of accesses to shared variables/resources.1.1 Probabilistic TechniquesWe now discuss a number of fundamental techniques used by designers of randomized algo-rithms. This list is not meant to be exhaustive, and the techniques considered overlap in thesense that more than one may apply to a given randomized algorithm.Input Randomization|Consider an algorithm A with input I and outputO. As discussedabove, if we �x the size of I, then the average running time of A refers to the averagetime taken by the algorithm when each possible instance of I is considered equally likely.That is, a uniform distribution on inputs is assumed. However, this may not be the actualinput distribution to which the algorithm is exposed, making the average time complexitymisleading. On the other hand, the expected running time of A on instance i of I refers tothe mean time that the algorithm would take to solve instance i over and over.Input randomization, i.e., rearranging or permuting the input to rid it of any existingpatterns, ensures that for all inputs, the expected running time matches the average runningtime. This technique can be e�ective on problems that have algorithms with good averagerunning time but poor worst-case running time due to some unfavorable input patterns.A well-known example of this technique is randomized quicksort [Knu73]. Quicksortperforms very well if the list of numbers to be sorted has a random order to it. However,quicksort degenerates to a comparison of every number with every other number if the inputis already nearly sorted. One can think of randomized quicksort as a two step procedure. Inthe �rst step, the input sequence to be sorted is randomly permuted. The usual quicksortalgorithm is then applied to the resulting sequence. Although the input randomization stepcan be performed in linear time, in practice, it is usually more e�cient to simply pick thepivot element randomly. Our sock selection problem (SockSel) is another illustration of thepower of input randomization. 7
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An interesting application of input randomization is seen in some probabilistic interactiveproof-systems. Here a prover , which supposedly can solve a hard problem, tries to convince askeptical veri�er of its prowess. For some problems, the veri�er's task essentially consists ofrandomizing the input to the prover. This constitutes an attempt by the veri�er to confusethe prover about the speci�c problem instance it is being asked to work on. In Section 2.6,we will see this use of input randomization in action for verifying the correctness of anyprogram that purportedly solves the graph isomorphism problem. The proof system willhave the additional feature that the prover can convince the veri�er of its isomorphism-checking prowess without the veri�er having to solve the graph isomorphism problem in anysense.Input randomization is not restricted to sequential algorithms. Some randomized mes-sage routing algorithms, e.g., Valiant's algorithm for hypercubes [Val82] and Aleluinas'salgorithm for b-way shu�e networks [Ale82], exhibit what may be termed distributed inputrandomization. In the message routing problem, a set of messages must be routed fromsource nodes to destination nodes in a network of computers. Moreover, the routing mustbe done in a distributed manner, i.e., without the help of a central arbiter. In the algo-rithms of [Val82, Ale82], each message is �rst sent to a randomly chosen intermediate nodebefore being transmitted to its �nal destination. This randomization step eliminates \hotpoints" by distributing the tra�c uniformly over the network. That is, it rids the input ofany patterns that may exist between source nodes and destination nodes. In Section 3.4, wedescribe the message routing algorithms of Valiant and Aleluinas as well as a technique formulti-buttery networks based on randomizing the interconnections between nodes.Random Search|Random search is one of the most widely used probabilistic techniques.Many problems naturally involve searching a large space for an element having a desiredproperty. If the property in question is easily veri�ed and the elements possessing it areabundant, random search can be very e�ective.Consider, for example, the problem of verifying the polynomial identityf(X1;X2; . . . ;Xn) = 0:If f is identically zero, then for all assignments of the Xi's it will evaluate to zero. However,if f is non-zero, then it can be shown that for any suitably constructed set of inputs, fwill possess only a bounded number of zeros. In particular, if S is a set with more thanc � deg(f) elements from the �eld generated by the coe�cients of f , then f can have at most8
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jSjnc zeros in Sn, for some constant c [Sch79]. Thus every trial evaluation of f on a randomlypicked element of Sn will either prove the falsity of the identity, or yield credence to it with1=c as the probability of being wrong. In k trials, therefore, one can either disprove theidentity or come to believe it to be true with error probability less than 1=ck, a numberthat can be easily made smaller than the probability of a stray �-particle disrupting thecomputation. Randomized algorithms for testing polynomial identities and properties ofsystems of polynomials are discussed in detail in [Sch79, Zip79].The probabilistic test for polynomial identities can also be used for determining whethera given undirected graph G(V;E) has a perfect matching, i.e., a set of edges that covers eachvertex exactly once. To see this, let V = f1; 2; . . .ng be the vertex set and associate variablexij with edge eij 2 E. De�ne the n � n matrix B = [bij] as follows. If there is no edgebetween vertex i and vertex j them bij = 0. Otherwise, bij = xij if i > j and bij = �xijif i < j. Tutte [Tut47] proved that G has a perfect matching if and only if det(B) is notidentically equal to zero. It was �rst observed by L�ov�asz [Lov79] that since det(B) is apolynomial in the xij's, one can test for the validity of the polynomial identity det(B) = 0using the probabilistic technique described above. L�ov�asz, in the same paper, also describesa probabilistic method for determining the actual perfect matching, if one exists.More e�cient sequential methods for computing the perfect matching, though consid-erably more complicated, have been described in the literature. The beauty of the abovescheme is its simplicity. In addition, it can be e�ciently parallelized: the parallel imple-mentation has the same resource requirements as those for evaluating a determinant, viz.,O(log2 n) time using O(n3:5) processors [KUW86, MVV87]. This is signi�cant as perfectmatching is a fundamental problem that is not known to be in NC , the class of problemshaving parallel algorithms that run in polylog time while using a polynomially bounded num-ber of processors. The randomized parallel algorithms of [KUW86, MVV87] do, however,place perfect matching in Random NC . One can also determine the actual perfect matchingin parallel; see [KUW86, MVV87] for details.Random search has also been used in algorithms on �nite �elds [Rab80b, Ber70]. It can beshown (e.g., see [Ber70]) that one in about every n polynomials in Zp[x] (the �eld of residues(mod p), where p is prime) is an irreducible monic polynomial of degree n. This resulthas been reproved, using a di�erent technique, in [Rab80b]. Thus a plausible algorithmfor �nding an irreducible polynomial is to repeatedly pick one at random and test it forirreducibility. Since it takes O(n2(log n)2 log log n log p) steps to test for irreducibility, onecan �nd an irreducible polynomial in a reasonable amount of time. Algorithms for �nding9
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roots and irreducible factors based on random search are also given in [Rab80b].There is a long history in number theory of using random search. For example, theresult that 1 out of n polynomials of degree n over a �nite �eld is irreducible, used aboveto derive a randomized algorithm for �nding an irreducible polynomial, was published in1856 by Richard Dedekind [J. Reine Angew. Math.]. Evidence exists that Gauss knew thisresult for the integers (mod p). Even earlier, Galois noted that a good way to select anirreducible polynomial over a �nite �eld was by trial. Similarly, a paper by Pocklington[Proc. Cambridge Phil. Soc., 1917] on computing square roots mod p gives an estimate ofthe probability that a random search will succeed and take no more than cubic time.In this survey, the algorithms we present for primality testing (PrimeTest) and perfecthashing (PerfHash) also use random search.An implicit prerequisite for e�ective random search is the ability to randomly pick anelement, more or less uniformly, from the space under consideration; e.g., the space of \wit-nesses" having a certain property, the space of spanning trees of a graph, or the space ofdegree-n polynomials. Determining the spaces for which this is possible is in itself an inter-esting problem. For example, it is not immediately clear how one would pick one spanningtree, uniformly at random, from the space of all possible spanning trees of a connected,undirected graph. This particular problem was solved by Broder [Bro89] who presenteda randomized algorithm with an expected running time of O(n log n) per generated treefor almost all graphs. In the worst case, the algorithm requires O(n3) time per generatedtree. Babai [Bab91] presents a randomized algorithm that constructs an e�cient nearlyuniform random generator for �nite groups in a very general setting. Other interestingwork on the random generation of combinatorial structures and sample spaces can be foundin [JVV86, AGHP90].Not all algorithms based on random search contain a veri�cation step. If the search spaceis teeming with elements possessing the desired property, one can even dispense with check-ing the property. This is particularly useful if the property in question is not easily checked.For example, the problem NetHierarchy calls for constructing a network (a complete directedgraph) on n nodes that does not contain a hierarchy on any subset of m nodes. A hierarchy,also known as a transitive tournament [ES74], is a graph in which for all nodes x, y andz, if the directed edges (x; y) and (y; z) exist then the edge (x; z) also exists. We will seethat with high probability, any randomly selected network on n nodes will be devoid of largehierarchies as long as m is su�ciently \large".10
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Control Randomization|Consider a problem for which many algorithms exist, such assorting. If each of these algorithms has good expected performance for some problem in-stances but poor worst-case performance, it is very risky to use any single one of them. Thisis especially true if the input probability distribution is not known. It may happen that theinput is biased in such a way that it favors the bad cases. In such a situation, good averageperformance, which is typically computed assuming uniform input distribution, does notguarantee much. A way around this problem is to randomly pick one of the algorithms foreach input instance. This strategy assumes, of course, that there is no signi�cant correlationamong the algorithms on what constitutes the bad inputs.The randomized string matching algorithm of Karp and Rabin [KR87] exempli�es the useof control randomization. Here the problem is to determine if a given pattern of m symbolsoccurs in a text of length n. A naive algorithm would compare the pattern to the substrings atall possible text locations resulting in O(nm) time complexity. Karp and Rabin do better byusing a �ngerprinting function that associates an integer with a text string using arithmeticcalculations modulo a given prime number. They need only compare the �ngerprint of thepattern to the �ngerprints of all possible text locations. Control randomization comes intoplay as the �ngerprinting function, actually the prime number underlying the �ngerprintingfunction, is chosen at random.Although the worst case running time of their algorithm is O((n �m + 1)m), like thenaive algorithm, in practice one can expect it to run in time O(n +m).3 There is, however,a small probability (1q , where q is the prime number used in the �ngerprinting function)that the algorithm detects a false or spurious match. As a result, the algorithm incurs theadditional overhead needed to check that detected matches are actually valid.It is worth noting that a competitive alternative to the Karp-Rabin algorithm is thedeterministic Knuth-Morris-Pratt algorithm [KMP77] which runs in time O(n + m). Themain novel idea behind this algorithm is the calculation of the pre�x function, which for agiven pattern encapsulates knowledge about how the pattern matches against shifts of itself.As we will see, the problem of universal hashing (UnivHash) also admits a solution basedon control randomization.3The worst case behavior manifests itself in the presence of O(n) occurrences of the pattern in the text. Amore realistic, constant number of occurrences of the pattern within the text leads to the O(n+m) runningtime cited above. 11
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Random Sampling|Sometimes it is possible to ascertain, with high probability, certainproperties of a set S from a randomly chosen subset of S. This technique is usually called\random sampling." As a simple example, consider a set S of n real numbers, and a randomlychosen subset R of S of size r [CS89]. R contains a lot of information about S. For example,if we let S> be the subset of numbers in S that are greater than the maximum value inR, then the expected size of S> is O(n=r). Thus the size of S> diminishes as more andmore values from S are sampled. Similarly, the expected size of the corresponding set S< isO(n=r).As another example of random sampling, consider the problem of numerically computingthe integral I = Z ba f(x)dx;using Monte Carlo integration (not to be confused with Monte Carlo algorithms discussedin Section 1.2). Assuming that f(x) is bounded by c, for a � x � b, this is accomplished by�rst randomly choosing a set of points that lie within the rectangle 
 given by
 = f(x; y) j a � x � b; 0 � y � cg;Next, assuming that our random sample contains N points, determine the number NH ofthese points (the \hit points") that lie beneath the curve. Then the desired integral I, whichis equal to the area under the curve within the bounding rectangle 
, is approximated byI � c(b� a)NHN ;i.e., the fraction of hit points in our random sample multiplied by the area of 
 (see Figure 1).The error in the computation depends on the number of points chosen. The larger therandom sample, the less likely it is that the computed area di�ers signi�cantly from thecorrect answer.Note that for the computation of ordinary integrals with \well behaved" integrands, oneis better o� e�ciency-wise and accuracy-wise using traditional numerical techniques suchas the trapezoidal and Simpson's rules. Monte Carlo integration becomes attractive if thefunction fails to be regular which is often the case for multidimensional integrals [Rub81].A more involved use of random sampling will be seen in Rabin's [Rab76] algorithm forthe nearest neighbors problem (NearNeb). Here the distance � separating the closest pair ofpoints in a given set S, is deduced from a random subset of S containing n 23 of the points.12
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Figure 1: Graphical depiction of Monte Carlo integration from [Rub81]: 
 is the boundingrectangle; I, the desired integral, is the area under the curve; sample points above the curveare misses and those below are hits.The expected running time of this algorithm is better than any known deterministic algo-rithm, under certain reasonable assumptions.Symmetry Breaking|There are certain problems in distributed computing, in partic-ular, problems in which processes must reach some sort of agreement, that do not havedeterministic solutions. This dilemma surfaces when processes behave in a deterministic andidentical fashion, without making any concessions toward the goal of reaching agreement.By introducing randomization into the behavior of the processes themselves, these patternsof identical or \symmetric" behavior can be broken, thereby leading to agreement.For example consider the \narrow door" problem in which two people are trying to exit aroom through a door that at most one person can squeeze through at a time. If both personsreact to a collision at the door by backing up two feet and retrying after �ve seconds, thenan initial collision could conceivably result in a never-ending succession of collisions, withneither party ever succeeding in leaving the room. A distributed algorithm that guaranteeswith probability 1 that someone will eventually be able to leave the room would require eachparticipant to wait a randomly distributed amount of time after each collision before trying13
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again. This essentially describes the hardware protocol for the Ethernet. Other examplesof symmetry breaking include the dining philosophers problem (DinPhil), communicationguard scheduling (CommGuard), and leader election (LeadElect).1.2 Tradeo�sTradeo�s are often involved in the use of randomized algorithms. Bene�ts to be reapedby introducing randomization into algorithms include, in the sequential case, reductions intime complexity (e.g., PrimeTest , SockSel , and NearNeb) and in space complexity (e.g.,PerfHash).In the distributed case, reductions in communication complexity (e.g., ByzAgree) andqueueing delay (e.g., MsgRoute) can be obtained, and an algorithm's resiliency to faults canbe improved (e.g., MsgRoute). Perhaps an even more fundamental bene�t of randomizationin the distributed setting is the ability to solve problems that have no deterministic solutions(e.g., DinPhil , CommGuard , and LeadElect).In addition to these gains, a randomized algorithm is almost always simpler to understandand easier to implement than its deterministic counterpart. This is perhaps best illustratedby L�ov�asz's probabilistic algorithm for perfect matching discussed earlier. As we will see,conceptual elegance and simplicity are a hallmark of all the randomized algorithms treatedin this survey. In an age of rising software complexity and cost, the simplicity of randomizedalgorithms will be a key determining factor in their acceptance by the software community.To pro�t from the use of randomization, one must often sacri�ce the traditional notionof absolute program correctness for a notion of \correct with probability 1 � �." For thedistributed algorithms DinPhil , CommGuard , and ByzAgree the � is zero, so we have even-tual agreement with probability 1. In other cases, such as PrimeTest , the � can be madeexponentially small in the length of the input by iterating the algorithm some number oftimes. The beauty of these algorithms is that usually only a small number of iterations arerequired to establish a very high degree of con�dence in their output.Another potential problem with randomized algorithms is that sometimes there is asmall probability of taking an inordinate amount of time to execute (e.g., NearNeb) or ofeven failing to halt (e.g., LeadElect).Analogous to the space-time tradeo� inherent to deterministic sequential algorithms, with14



www.manaraa.com

randomized algorithms, there is a tradeo� involving resource requirements and absolutecorrectness. In fact, this tradeo� has led to the distinction of two types of randomizedalgorithms: Monte Carlo algorithms are always fast and probably correct, whereas Las Vegasalgorithms are probably fast and, upon termination, always correct. Las Vegas algorithms,however, may fail to terminate for some inputs. For example, the algorithm for primalitytesting (PrimeTest) is of the Monte Carlo variety, while the algorithm for nearest neighbors(NearNeb) is of the Las Vegas variety.If a purported solution to a problem is easily veri�able then a Monte Carlo algorithmMC for it can be converted into a Las Vegas algorithm by simply repeating MC till a correctsolution is found. Similarly, any Las Vegas algorithm LV can be trivially converted into aMonte Carlo algorithm: one can always return a wrong answer (e�ciently!) if LV seems tobe taking too long. Since LV is fast with high probability, the modi�ed algorithm will becorrect with high probability.The Karp-Rabin string matching algorithm described above is a good example of howto convert a Monte Carlo algorithm into a Las Vegas algorithm: the kernel of the Karp-Rabin algorithm will, from time to time, report spurious matches. By �rst checking if apurported match is a valid match, the Karp-Rabin algorithm always gives a correct answer.Muthukrishnan [Mut93] gives an e�cient parallel algorithm for exactly this problem.In [BB88], Las Vegas algorithms possessing bounded time requirements are called Sher-wood algorithms. Randomized quicksort is an example of a Sherwood algorithm. It takesat most O(n2) time on any problem instance. Note that a Las Vegas algorithm that maypossibly not terminate (e.g., LeadElect), cannot be a Sherwood algorithm.2 Sequential Randomized AlgorithmsIn the �rst part of this survey, we present seven sequential randomized algorithms. The �rstalgorithm (SockSel) is a simple illustration of the input randomization technique. The nextthree algorithms (PrimeTest , NetHierarchy, and PerfHash) illustrate the power of randomsearch. We then give an example of control strategy randomization (UnivHash). We concludethis section with a randomized algorithm that uses random sampling (NearNeb).15
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2.1 The Sock Selection ProblemIn this section, we provide a randomized solution to the Sock Selection problem (SockSel).This problem, although somewhat contrived, illustrates the technique of input randomizationin a simple manner. It also bears connections with certain resource allocation problems.Consider a dresser drawer of 2n socks, half of which are red and half of which are blue.Person X has just awoken and is in dire need of a matching pair of socks; a matching pair ofeither color will do. In his elusive search for this holy grail, person X randomly extracts asock at a time from the drawer, and may also throw socks away (one at a time) if he believeshe has no use for them. He is not allowed to put a sock back in the drawer. The questionis, then: How many socks need person X remove from the drawer before a matching pair isobtained?If there is no limit to the number of socks person X can have in his possession at anyone time, then the problem is trivial. He simply removes three socks from the drawer anddiscards the sock that is not needed. Since two socks out of three must be the same color,this procedure will terminate in constant time.The problem becomes more interesting if person X can have in his possession at mosttwo socks at any one time, and this is the sock selection problem we study. The simplestdeterministic solution, which is basically a sequential search through the sequence of socksextracted from the drawer, is as follows.SockSel1 f (* First Try at Sock Selection *)s1 := get-sock()s2 := get-sock()WHILE color-of(s1) <> color-of(s2) DO fdiscard-sock(s2)s2 := get-sock()g (* end while *)g It is not di�cult to see that in the worst case this algorithm will take O(n) time. Theworst case behavior is manifest when the sequence of socks returned by get-sock() is eitherred, blue, blue, . . . ; blue, red or blue, red, red, . . . ; red, blue, where the number of intervening16
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socks of opposite color is O(n). In fact we can make a stronger statement: any deterministicalgorithm will have O(n) worst case running time.The above \worst case" sequences of socks returned by get-sock() capture the drawerin an adversarial role with respect to person X. For most of the sequences returned byget-sock(), however, the while-loop will terminate before n steps. Thus it is reasonable toanticipate that the average running time of SockSel1 is much less than O(n). This suggeststhe randomized algorithm SockSel2 , an improved version of SockSel1 .SockSel2 f (* Revised Sock Selection Algorithm *)s1 := get-sock()s2 := get-sock()WHILE color-of(s1) <> color-of(s2) DO ftoss a perfect two-sided coinIF heads THEN fdiscard-sock(s1)s1 := get-sock()gELSE fdiscard-sock(s2)s2 := get-sock()gg (* end while *)g Here we assume that the drawer does not know the random choices made by SockSel2 ,i.e., the coin tosses are private.4 This assumption is critical for, without it, the drawer canforce SockSel2 into long O(n)-step executions. Even worse, if the coin tosses are public, anadversarial drawer can force person X to end up with a mismatching pair of socks after thedrawer has been emptied.The way SockSel2 is formulated above, the latter problem does not completely go awayeven when the coin tosses are hidden from the drawer: with probability that is exponentially4For a discussion of private vs. public coin tosses, see the last paragraph of Section 2.6 and [GS89].A related concept called shared randomness, which is weaker than both private and public coin tosses, isdiscussed in [BDMP91]. 17
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small in n, SockSel2 can return a mismatched pair of socks. SockSel2 can be made foolproofby employing two counters, one for the number of red socks left in the drawer and one forthe number of blue socks left in the drawer. If it �nds that it possesses the last sock of aparticular color, then it should immediately discard that sock. The next call to get-sock()will return a matching sock.Assuming SockSel2's coin tosses are private, a viable strategy for the drawer is to haveget-sock() return socks of di�erent colors on the �rst two calls and thereafter ip a perfecttwo-sided coin to determine the color of the next sock to return. In this case, the probabilitythat the while-loop will be executed i times is (1=2)i, i � 1, and, thus, the probability thatget-sock() is called exactly (i+2) times is (1=2)i. The expected running time, for large n,is given by i=nXi=1(i+ 2)(1=2)i � 4: (1)Notice that the running time of SockSel1 averaged over all sequences returned by get-sock()is 4, the same as the expected running time of SockSel2 for any input sequence. The followingproperties can thus be ascribed to problems amenable to solution by input randomization:1. The problem should have a deterministic algorithm with good average running time.2. The random transformation applied to the input for achieving uniform running timefor all the inputs should take less time than the algorithm itself.The problem of primality testing considered next illustrates another technique for ran-domized algorithms: random search.2.2 Primality TestingThe problem of primality testing is, Given a positive integer n expressed in binary notation,is n a prime number? Recall that a number n is prime if the only numbers by which it isdivisible are 1 and itself; otherwise, n is said to be composite.Since the dawn of number theory, prime numbers have enjoyed considerable attention.Despite all the progress in the �eld, to date there is no formula (similar to, say, Fibonaccinumbers) to enumerate all the prime numbers. Fermat's primes, some of which are actuallynot prime, and the ancient Chinese assertion that n is prime if and only if n divides 2n � 2,18
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are wrong results which exemplify the mysteries enshrined in prime numbers. (For the latter,consider, for example, n = 341.)Of late extremely large prime numbers are in great demand because of their use in de�n-ing trap-door functions for public key cryptography systems [RSA78, Sch84, GM84, Smi83].For example, in the Rivest-Shamir-Adleman (or RSA) cryptosystem [RSA78] the keys are200-digit numbers. An encryption key is the product of two secret primes, having approxi-mately 100 digits each, which are known only to the creator of the key. The correspondingdecryption key is computed from the same two prime numbers using a publicly known algo-rithm. Di�culty in factoring large numbers is at heart of this cryptosystem: it ensures thatone cannot easily deduce, in any reasonable amount of time, the prime numbers that wentinto forming the publicly advertized encryption key. Clearly, large primes are essential tothis scheme. Using randomized search for testing whether a given number is prime | sucha test can be used for generating large prime numbers | is the subject of this section.In the absence of a formula, a plausible strategy for generating large prime numbersmight be:GenPrimefREPEATfPick a large number at random;Test whether it is prime;gUNTIL a prime number of desired size is foundg The mean distance between primes in the neighborhood of a number n is O(log n) (see,e.g., [Sch84]). Thus we do not have to test very many numbers before �nding one in thedesired range. For example, in order to �nd a prime number about 1020 in size, we only haveto test about 48 numbers. The catch, however, is to test such large numbers for primalityin a moderate amount of time.One might contemplate using trial division, or even Wilson's theorem | which statesthat a number n is prime if and only if n divides (n� 1)! + 1 without remainder | in orderto check for primality. Repeated trial divisions are clearly very ine�cient because even ifone were to try divisions with only the prime numbers between 1 and n | notwithstandingthe fact that there is no formula for generating them | one still has to conduct O(n= log n)19
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divisions. Since n is encoded in dlog(n+ 1)e bits, repeated divisions will take exponentiallylong. Furthermore, the sight of the factorial should dispel any hope for success in usingWilson's theorem as a practical test for primality.Another fundamental result from number theory also appears promising. Pierre de Fer-mat, a French mathematician, showed that if a number n is prime then, for all x, n doesnot divide x implies n divides xn�1 � 1 [Sch84]. This result has become known as Fermat'stheorem, not to be confused with his last theorem. The condition n divides xn�1 � 1 can berestated as xn�1 � 1 (mod n), which we refer to as Fermat's congruence.The contrapositive of Fermat's theorem yields a technique for showing the compositenessof a number n. That is, n can be proven composite if we can �nd an x such that n does notdivide x or xn�1� 1 (elementary properties of modular arithmetic allow the latter conditionto be veri�ed without ever computing the number xn�1 � 1). Let us call such x witnesses tothe compositeness of n. Note that a reasonable search space for x are the integers between1 and n � 1, inclusively, as these are guaranteed not to be divisible by n.The problem with using Fermat's theorem, however, is that the converse of the theoremdoes not hold and there therefore exist composite n bearing no witnesses to their compos-iteness. Such n are known as the Carmichael numbers, the �rst three of which are 561,1105, and 1729. Interestingly, as pointed out in [CLR90], Carmichael numbers are extremelyrare; there are, for example, only 255 of them less than 100,000,000. Furthermore, even if acomposite n possesses a witness x, i.e., it is not a Carmichael number, there is no obviousway to locate x.One can also obtain a positive identi�cation of composite numbers using the Lucas-Lehmer heuristic [Leh27]: n is prime if and only if xn�1 � 1 (mod n) and xn�1p 6� 1(mod n), for each prime factor p of n� 1. In general, the prime factors of n� 1 may not beknown. However, this test can be used e�ectively if n = 2m + 1 for some positive integer m,a rather restricted subset of the integers.Let n = �i=mi=1 p�ii be the unique prime factorization of n. De�ne �(n) = lcmfp�1�11 (p1 �1); . . . ; p�m�1m (pm � 1)g. It was shown by Carmichael [Car12], of the Carmichael numbersfame, that n satis�es Fermat's congruence if and only if �(n) divides (n � 1). The readercan verify that �(561) divides 560.In light of above theorem, a plausible approach to testing primality | actually compos-iteness, but for a deterministic algorithm that always terminates with the correct answer, itdoes not matter | is as follows. Divide composite numbers into two categories according20
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to whether �(n) divides, or does not divide, (n � 1). If �(n) does not divide (n � 1), thenby virtue of Carmichael's result, one can use Fermat's test. On the other hand, if �(n) doesdivide (n � 1) a new test is necessary. If an attempt to place a number in either categoryfails, it must be prime.A variation of the above strategy was employed by G. Miller in a paper that has proven tobe very useful in primality testing [Mil76]. This paper de�ned the basic concepts that werelater used by Rabin to derive a probabilistic algorithm for primality testing. To arrive at hisalgorithm for primality testing, Miller divided the composite numbers as suggested above.However, instead of using Carmichael's �-function, he used �0(n) = lcmf(p1�1); . . . ; (pm�1)gto pare down the set of composite numbers that satisfy Fermat's congruence. The followingis a simpli�ed version of Miller's algorithm. In this algorithm, f is a computable function.PrimeTest (Miller) f (* a deterministic algorithm for primality testing *)Input nIf n is a perfect power, say ms, output `composite' and HALTREPEAT FOR EACH x � f(n) f(1) if x divides n, output `composite' and HALT(2) if xn�1 6� 1 (mod n), output `composite' and HALT(3) if there is an i such that n�12i = m is integral,and 1 < gcd(xm � 1; n) < n, output `composite' and HALTgoutput `prime' and HALTg Miller used the �0 function to characterize the class of composite numbers that satisfyFermat's congruence. He proved that a function f can be de�ned such that, if n is composite,then by testing conditions (1) through (3) repeatedly, for all x � f(n), the algorithm willindeed identify n as composite. Furthermore, f(n) can be de�ned so that the above algorithmterminates in O(n 17 ) steps. Since n is given in dlog(n+ 1)e bits, O(n 17 ) is still exponentiallylong. Using the Extended Riemann Hypothesis (ERH), however, Miller proved that f canbe de�ned so that a slightly more complex version of the above algorithm terminates in21
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O(�4 log log �) steps, where � = dlog(n+1)e denotes the length of the binary representationof n. Thus, the primality of a number can be determined deterministically in polynomialtime assuming ERH.Like before, let us call any number x between 1 and n for which at least one of conditions(2) and (3) in the main body of the above algorithm is true a witness to the compositeness ofn. A key observation which makes randomized testing for primality feasible is that there isan abundance of witnesses for compositeness. The probability that a number is composite,and conditions (2) and (3) are not satis�ed is very small. In fact, Rabin [Rab76] has shownthat more than half the values of x 2 f1; 2; :::; n�1g satisfy (2) or (3) if n is indeed composite(see, also, [CLR90], Theorem 33.38). Monier [Mon80] has subsequently strengthened thisresult by showing that at least 3=4 of the x are witnesses. Even though Miller's polynomialtime algorithm for testing primality requires the ERH, these results about the density ofwitnesses holds in general and can be proved without recourse to this hypothesis.Figure 2 illustrates the high density of witnesses to compositeness. The �gure shows, foreach integer n in the range 10,000 to 12,000, the percentage of integers between 1 and n thatare witnesses to the compositeness of n. As can be seen, if the number is composite, thenthe percentage of witnesses in this range of numbers is almost always more than 98%; foronly about 18 numbers out of 2000, the percentage of witnesses lies in the 85 to 98% range.As is to be expected, for primes there are no witnesses, resulting in a sparse set of pointsalong y = 0.Miller witnesses, in conjunction with Rabin's result about their density, gives a ratherpowerful primality testing algorithm:PrimeTest (Rabin) f (* a probabilistic algorithm for primality testing*)Input nREPEAT r timesf(1) randomly pick an x between 1 and n(2) if xn�1 6� 1 (mod n), output `composite' and HALT(3) if there is an i such that n�12i = m is integral,and 1 < gcd(xm � 1; n) < n, output `composite' and HALTgoutput `prime' and HALT 22
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Figure 2: Percentage of witnesses to the compositeness of n in the range 10,000 to 12,000.The points at y = 0 represent prime numbers.
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g In the above algorithm, if either condition (2) or (3) is satis�ed then n is composite. Onthe other hand, if (2) and (3) are not satis�ed by x then n may or may not be composite andthe procedure must be repeated. If r trials are used, the probability that n is composite andnot detected is less than 1=2r. Therefore, with very few trials, one can either prove that anumber is composite or gain a high degree of con�dence that it is prime. See also [BBC+88]for some intriguing observations about the performance of Rabin's primality test and aboutits reliability when used to generate a random integer that is probably prime.In the mid-seventies, another probabilistic primality testing algorithm was discovered bySolovay and Strassen [SS77]. Some basic results in number theory are needed to describetheir algorithm. For any prime number n, one can de�ne Z�n = f1; . . . ; n�1g, a cyclic groupunder multiplication mod n. The Legendre Symbol for any element x 2 Z�n, denoted by (xn),is de�ned to be 1 or �1 depending on whether or not x is a perfect square (i.e., a quadraticresidue modulo n) of some other element in Z�n. More precisely, (xn) = 1 if x � y2 (mod n)for some y 2 Z�n, �1 otherwise.If x is a perfect square, say x � y2 (mod n), then it is not di�cult to see that xn�12 �y(n�1) � 1 (mod n). This leads to a fast way of computing the Legendre symbol. One canextend these concepts to a general n which may or may not be prime. In this case, for anynumber n, one can de�ne Z�n = fxjx 2 f1; . . . ; n� 1g, and gcd(x; n) = 1g. Once again, Z�nis a group under multiplication mod n. The Legendre symbol is generalized to the Jacobisymbol : if n is prime, the Jacobi symbol equals the Legendre symbol; when n is composite,the Jacobi symbol is de�ned to be the product of all the Legendre symbols corresponding tothe prime factors of n, i.e., if n = �pi, then (xn) = �(xpi).In the algorithm by Solovay and Strassen, for x 2 f1; . . . ; n � 1g to be a witness tocompositeness of n, either gcd(x; n) > 1 or xn�12 (mod n) 6= (xn). Their algorithm can bestated as follows.PrimeTest (Solovay-Strassen) f (* another algorithm for primality testing*)Input nREPEAT r timesf(1) randomly pick an x between 1 and n24
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(2) if gcd(x; n) > 1, output `composite' and HALT(3) if xn�12 (mod n) 6= (xn), output `composite' and HALTgoutput `prime' and HALTg Determining if x and n are relatively prime (e.g. by Euclid's algorithm), computing xn�12(mod n), and the Jacobi symbol (xn), can all be accomplished in logarithmic time. If n isprime, then it follows from the fact that Z�n is cyclic, that x (n�1)2 � (xn) (mod n). Thus whenn is indeed prime, no x will qualify as a witness. When n is composite, Solovay and Strassenshowed that the set of false witnesses | the numbers in f1; . . . ; n�1g that violate conditions(1) and (2), i.e., gcd(x; n) = 1 and x (n�1)2 � (xn) (mod n) | forms a proper subgroup of Z�n.Hence the cardinality of this set can be at most (n� 1)=2. Once again, using the propertiesof quadratic residues modulo n, the witnesses for compositeness are de�ned in such a waythat they are both easily checkable and abundant.An interesting comparison of the Miller-Rabin and Solovay-Strassen primality testingalgorithms is given in [Mon80], where it is shown that the former is always more e�cientthan the latter. These two algorithms are of the Monte Carlo variety because when n is primethey can report so only with a certain probabilistic measure of con�dence; in particular, noproof is provided that this is the case. Convincing somebody that a number is composite isan easy task: one simply has to exhibit that it is a product of other two numbers. How canone demonstrate that a number n is prime? Certainly it can be done by showing all possibletrial divisions, but that is not an e�cient proof as it is exponentially long in the length ofn. It was shown by Pratt [Pra75], using the Lucas-Lehmer heuristic for primality testing,that one can give a succinct proof for primeness of a number n in O(log n) lines. While itis easy to verify such a proof, unfortunately, there is no known method for coming up withthe proof, or demonstrating the absence thereof, in polynomial time.Other algorithms utilizing di�erent number theoretic properties for de�ning witnesses forcompositeness and primality have also been discovered [Rab80a, Leh82, AH87, GK86, AH88].For example, Adleman and Huang [AH88] have devised a new algorithm that, instead ofdeciding primality by the inability to demonstrate witnesses to compositeness, employs aseparate Monte Carlo test for primality. Thus, just like composite numbers, there exists arandom polynomial time algorithm for the set of prime numbers. The algorithm ip-ops25
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between searching for witnesses to compositeness and witnesses to primality, eventually�nding one in polynomially bounded expected time. This algorithm, which is of the LasVegas variety, will never declare a composite number to be prime or vice versa. However, itmay not terminate in polynomial time for some inputs.The next problem we consider, which concerns the notion of transitive tournament dueto Erd}os and Spencer [ES74], again illustrates random search. In this case, however, thesample space is so abundant with good points that the \checking" step inherent to primalitytesting can be dispensed with.2.3 Networks without Large HierarchiesLong ago, in a place called Confusion Land, there reigned an incompetent king called Nadir.Nadir had appointed 1000 ministers, generals, and other high-ranking o�cials to variousportfolios in his kingdom. As usual, Nadir was afraid that some of his appointees wouldorganize, revolt, and �nally usurp the throne. His remedy was simple: keep them confused.He did this by not allowing a clear-cut line of command|a hierarchy|to be formed amongthese o�cials. His long experience in politics had convinced him that even if as few as 25o�cials got organized they would overthrow him.Nadir's de�nition of \being organized" is as follows: k o�cials are said to be organizedin a hierarchy if for every three of them, the \is-a-boss-of" relation is transitive. That is, iffor all triples of the form (A;B;C), if A is a boss of B and B is a boss of C implies A is aboss of C, then the k o�cials are organized.Having made appointments to the 1000 positions, Nadir is stuck with the following task.He must de�ne the is-a-boss-of relation between every pair of appointees such that no groupof 25 or more o�cials is organized. At the micro-level (groups of size less than 25), theremay be organized groups; at the macro-level, however, confusion should prevail. How willNadir assign ranks to these thousand appointees in order to achieve his crooked objective?In this section we consider Nadir's problem in detail and provide a general solution, thekey to which is a theorem of Erd}os and Spencer (Chapter 1 of [ES74]). To make this sectionself-contained, their result is proved here as Theorem 1. It turns out that Nadir's problemfalls in the category of problems for which the solution space is abundant with candidatespossessing a given property and random search can be used to derive the solution.26
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Nadir's problem can be described as that of constructing a network of nodes, where eachnode represents an o�cial. Informally, a network represents an assignment of precedencebetween all possible pairs of nodes. It can be represented by a complete directed graphwhere an edge from x to y represents the relation \x is a boss of y."Formally, a network T on a set V is a directed graph (V; T ) where T � V � V such thatfor all x; y 2 V; x 6= y, either (x; y) 2 T or (y; x) 2 T , but not both. A network T is ahierarchy if (x; y); (y; z) 2 T implies (x; z) 2 T , 8x; y; z 2 V . Networks and hierarchies arecalled tournaments and transitive tournaments, respectively, in [ES74].Nadir's problem then, which we refer to as the NetHierarchy problem, is to construct anetwork that does not have \large" hierarchies. In particular, he wants a network Tn onn nodes such that every subnetwork of Tn containing m or more nodes is not a hierarchy.(In the case at hand, n = 1000 and m = 25.) A possible approach to constructing such anetwork would be to choose a network at random and check that all the (nm) subnetworksare not hierarchies. If a large hierarchy is found, another Tn can be picked randomly andchecked. This process can be continued until a network with the required property is found.As we will see below, for appropriate values of m, one can even dispense with the check asany random Tn would su�ce with a very high degree of con�dence.In a hierarchy it is possible to assign a unique rank to each node. The top-ranked nodeis a boss of all others, and in general, the ith-ranked node is a boss of all but those with abetter rank. Hence a hierarchy is equivalent to a permutation of the n nodes. Figure 3 showsa six-node network that contains a hierarchy on �ve nodes. The permutation correspondingto the hierarchy on nodes f1; . . . ; 5g is � : f1; 2; 3; 4; 5g ! f2; 3; 1; 4; 5g as 2 is a boss of allother nodes, 3 is a boss of 1, 4, and 5, and so on. Also, note that the full network is not ahierarchy because of the cycles among nodes f6; 3; 1g, f6; 3; 4g, and f6; 3; 5g.Erd}os and Spencer [ES74] have proved an important property concerning the size ofhierarchies in arbitrary networks, which we now present. De�ne �(n) to be the largestinteger such that every network on n nodes contains a hierarchy of �(n) nodes. Unlessstated otherwise log denotes logarithms to the base 2.Theorem 1 ([ES74]) �(n) < 1 + b2 log nc.The theorem is proved by showing that there exist networks that do not have any hierar-chy on 1+ b2 log nc nodes. The proof is non-constructive. Let �n be the class of all networks27
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Figure 3: A network with a hierarchy on �ve Players with � : f1; 2; 3; 4; 5g ! f2; 3; 1; 4; 5g.on n nodes and let �0n be the class of all networks that have a hierarchy on 1 + b2 log ncnodes. We show that there are more networks in �n than in �0n.We �rst count the number of networks in �n. Each network in �n consists of n verticesand (n2) edges, each of which can take two possible directions. Thus,j�nj = 2(n2 ) (2)Counting the number of networks in �0n is a bit more involved. Since each network in�0n has a hierarchy on ' = 1 + b2 log nc nodes, we �rst select the ' nodes and assign thema permutation, which will uniquely determine a hierarchy on these nodes. The remainingedges in the graph consisting of (n � ') nodes can be assigned arbitrarily. We count thenumber of networks for all the (n') possible choices of ' nodes and all the '! ways of assigningthem a permutation. Formally, �0n = [A [� TA;� (3)where A is a subset of n nodes such that jAj = ', � is a permutation of the ' members ofA, and TA;� is the set of networks on n nodes consistent with the hierarchy on A determinedby �. That is, each network in TA;� will contain a hierarchy on A uniquely determined by�. The structure of the network on the remaining n � ' nodes, however, is unspeci�ed. In28
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particular, the direction of (n2)� ('2 ) edges between these n� ' nodes is unspeci�ed. Hence,jTA;�j = 2(n2 )�('2 ) (4)Therefore, the total number of networks in �0n is bounded byj�0nj < XA X� jTA;�j = 0@ n' 1A'! 2(n2 )�('2 ) < 2(n2 ) = j�nj (5)This implies that �n��0n is non-empty and there exists T 2 �n��0n containing no hierarchyon ' = 1 + b2 log nc nodes. 2The above theorem establishes an upper bound on the largest integer � such that everynetwork on n nodes contains a hierarchy on �(n) nodes. It can also be proved, by inductionon n, that �(n) � 1+blog nc. Clearly, if it were the case in Nadir's politics that no hierarchiesbe formed on m < 1+blog nc nodes, then every assignment of the is-a-boss-of relation wouldviolate Nadir's requirement and he should make arrangements for a hasty departure. Onthe other hand, for values of m slightly greater than the upper bound of Theorem 1, theprobability that a randomly selected graph contains a large hierarchy is minuscule. Form � 1 + 2blog nc this probability is bounded byj�0njj�nj < 0@ nm 1Am! 2�(m2 ) (6)Therefore, if Nadir were to construct a random network on 1000 nodes, the probability thatit will have a hierarchy on any subset of 25 nodes is less than 0.0000000000000004. Thus avery promising strategy for Nadir is to toss a coin to determine the direction of each edge inthe network; the odds are less than 4 in 1016 that he will construct a bad network.The preceding discussion, unfortunately, leaves a \gray area" in the solution space: it isnot clear how to solve the NetHierarchy problem for values of m between 1 + blog nc and1 + 2blog nc. For values of m less than the lower bound on �, the solution is immediate;for values slightly greater than the upper bound, Theorem 1 immediately yields a trivialprobabilistic algorithm as basic counting procedures reveal that there is an abundance ofsolutions in this region. However, for the gray area in between the upper and lower boundson � | which can possibly be shrunk by making the bounds tighter | exhaustive searchseems to be the only way for solving this problem. The latter is prohibitively expensive evenfor moderate values of n and m. For example, if Nadir required that there be no hierarchieson 18 nodes, (100018 ) subnetworks must be tested.29
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2.4 Probabilistic HashingMany problems require maintaining a table of values, or keys, and performing insert, search,and delete operations on them. Typically, the set of possible keys is very large, though atany one time only a small fraction of the keys will actually be in the table. In this section,we study a very popular and potentially constant-time solution to table management calledhashing.Throughout this section, T [0 . . .m� 1] will denote the hash table and U [0 . . .N � 1] willdenote the universe of keys. In general, given a key x 2 U , we will be interested in insertingx into T , searching for x in T , or deleting x from T . The total number of keys in the tablewill be limited to n, n < m� N , and S, jSj = n, will denote the set of keys that are to beinserted into the table.Let h : U ! [0 . . .m � 1], be a function that can be evaluated in constant time. Thebasic scheme underlying hashing is as follows. To insert a key x into the table, simply storeit at T [h(x)], if possible. To search for or delete x, just check location h(x) in table T . Allthese operations take constant time, ful�lling the promise made earlier. However, there isa serious problem with this scheme. If there is another key, say y, such that h(x) = h(y),then x and y will try to occupy the same place in the table. This phenomenon is calleda collision. Much research has been conducted on �nding hash functions that result in aminimum number of collisions and on data structures for storing keys that hash to the sametable location.For hashing to perform well the following two requirements are essential: the hash func-tion distributes input keys uniformly over the table, and all the keys are equally likely. Whilethe �rst requirement can be met by appropriately choosing the function h(x), the secondrequirement is hard to ful�ll as it postulates certain behavior on the input distribution. Inpractice, this requirement is not only beyond the algorithm designer's control, it is oftenviolated. For example, a typical application of hashing is maintaining symbol tables forcompilers. For most programs, variable names such as I, J, K are more common then, say,XQP. Thus it is unreasonable to expect a uniform probability distribution from the input toa symbol table. However, if it is known that the input is biased, it may be possible to tunethe hash function. Perfect hashing represents the ultimate form of tuning, i.e., total collisionavoidance. Another way of minimizing the risk due to biases in the input is to choose thehash function dynamically and at random. These two schemes are explored in the followingsections. 30
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2.4.1 Perfect HashingHeuristic methods for perfect hashing were �rst introduced in [Spr77]. A recent overview ofperfect hashing can be found in [GBY91]. Several seminal results that make perfect hashingpossible were proved in [FKS82, Meh82]. The discussion in this section is based on Section2.3 of [Meh84a].A function h : U ! [0 . . .m � 1] is called a perfect hash function for S � U if 8x; y 2S; h(x) 6= h(y) if x 6= y. For any given set S of input keys such that jSj = n � m, clearlythere exists a perfect hash function: take any one-to-one mapping from S to any n distinctelements in T , and map all other elements of U so that they do not collide with the elementsof S. Such a brute force approach to constructing a perfect hash function, however, is notvery bene�cial as it involves a table look up that may take O(n) time. For perfect hashingto be of practical use, the following criteria should be met:� The program to compute a perfect hash function should be small in size.� For a given S, m and N , it should be easy to �nd a perfect hash function.� One should be able to evaluate a perfect hash function in O(1) time.In this section we consider the problem of �nding a perfect hash function given the valuesof S, m and N . The use of random search, in a suitably constructed family of functions, willbe the principal probabilistic technique used in the construction of such a function.Mehlhorn [Meh84a] has shown that there exists a program of length O(n2=m+log logN)that computes a perfect hash function for a given set S � U . This result, however, onlydemonstrates the existence of such a function. To �nd an actual perfect hash function,consider the following family H of hash functions:H = fhkjhk(x) = (kx mod N) mod m ; 1 � k < Ng: (7)Without loss of generality, let U = [0 . . .N � 1] be the universe of keys with N prime.Primality of N can be achieved by adding non-existent keys to U . The resulting universewill not be substantially larger than the original U as prime numbers are su�ciently dense(see Section 2.2). For a given set S, letB(i; k) = fxjx 2 S and (kx mod N) mod m = ig (8)31
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be the set of all the keys in S that collide at table location i when hk is used as the hashfunction. Each such set B(i; k) is called a bucket . Also, let b(i; k) = jB(i; k)j, 0 � i < m.Clearly, b(i; k) is one more than the number of collisions at T (i) when the hash functionused is hk. Using elementary counting principles and properties of modulo arithmetic onecan verify the following inequality [Meh84a]:N�1Xk=1 " m�1Xi=0 b(i; k)2!� n# � 2n(n� 1)(N � 2)m : (9)The quantityPm�1i=0 b(i; k)2 � n, for any particular value of k (and thus for any particularhk(x)), is a measure of the number of collisions. Let us de�ne MS(k) to be this measure.Equation (9) puts a bound on the sum of MS(k) for all possible values of k. Since MS(k)is always positive, more than half of them cannot exceed twice the upper-bound on thesummation in Equation (9). Therefore, at least half of all the possible k's must satisfy therelation MS(k) � 4n(n � 1)=m, since otherwise equation (9) would be invalidated. In otherwords, for a randomly picked k 2 [1 . . .N � 1],Prob "MS(k) � 4n(n� 1)m # > 12 ; (10)and the class H is rich in functions for which MS(k) is bounded by O(n2=m).Equation (10) provides a way of �nding, in O(n) expected time, an hk such that MS(k)is bounded by 4n(n�1)=m. Select a random k and computeMS(k). If it satis�es the boundwe are done; else select another k and do the same thing. The computation of MS(k) willtake O(n) time. Equation (10) guarantees that the expected number of tries will be no morethan two. Thus, there exists a function hk such thatm�1Xi=0 b(i; k)2 � n+ 4n(n � 1)m ; (11)which can be found in O(n) expected time. One can also show that this procedure willterminate in O(n log n) time with high probability.The above procedure forms the basis for �nding a perfect hash function for a speci�ctable size. In particular, we consider the two table sizes m = n and m = O(n2), and provethe following results:1. If m = n then an hk satisfying Pm�1i=0 b(i; k)2 < 5n can be found probabilistically inexpected time O(n). 32
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2. If m = 2n(n � 1) + 1 then hk, such that hk(x) = ((kx) mod N) mod m, is a perfecthash function for S and can be determined in O(n) expected time.The �rst result follows by substituting m = n in equation (11). For the second result,substituting m = 2n(n� 1) + 1 in equation (11) yields:m�1Xi=0 b(i; k)2 < n + 2: (12)Since Pm�1i=0 b(i; k) = n, equation (12) implies that bi � 1 for all i (the only solution for Xiin the set of equations PXi = n and PX2i � n + 2 is Xi � 1). As b(i; k) is the numberof elements in S that will occupy position i in the table, there will not be any collisions forthis value of k. Hence hk in equation (11) with m = O(n2) is a perfect hash function if anappropriate value of k is used.Thus the class H of functions has a perfect hash function for any S, jSj = n, if the size ofthe table is O(n2). Furthermore, such a function can be found in O(n) expected time. Theonly problem with this scheme is that the size of the table is much larger than jSj. Our �rstresult suggests a way out. We can partition S so that the square of the sum of all bucketsizes is no more than 5n. This can be done with one hash function, which obviously is notperfect. A second hash function, which is perfect for the smaller partition, can be used foreach partition. The following theorem gives a more precise statement.Theorem 2 Let N be prime and S � [0 . . .N � 1], jSj = n. A perfect hash functionh : S ! [0 . . .m� 1], m = 9n, with O(1) evaluation time and O(n log n) program size canbe found in O(n) expected time.Proof: The perfect hashing function is constructed in two steps. In the �rst step we �nd ak such that (kx mod N) mod m partitions S into subsets B(i; k), whereB(i; k) = fxjx 2 S and hk(x) = ig (13)such that Pm�1i=0 jB(i; k)j2 � 5n. Such a k exists and can be found in O(n) expectedtime. Let ci denote 2b(i; k)(b(i; k) � 1) + 1. In the second step, we �nd ki, for all i, suchthat (kix mod N) mod ci is a perfect hash function for a table of size ci and the set of keysB(i; k). By the second result proved earlier, this will take O(b(i; k)) expected time. Theprogram PerfHash computes the perfect hash function for a table of size 5n.33
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PerfHash f (* Computes perfect hash function h(x) *)i := (kx mod N) mod nj := (ki x mod N) mod cih := Pi�1l=0 cl + jg If the starting index for each sub-table (Pi�1l=0 cl) is stored, h(x) can be evaluated in O(1)time. Also, it is easily seen that the total size of the hash table in the above program is 9nbased on the fact that one can �nd a hash function hk, such that P b(i; k)2 = 5n. In thesecond step each bucket is mapped into a space of size 2b(i; k)(b(i; k) � 1) + 1. Hence thetotal space necessary isX1�i�nf2b(i; k)(b(i; k)� 1) + 1g = 2 X1�i�n b(i; k)2 � 2 X1�i�n b(i; k) + n= 2� 5n� 2n + n= 9n:As for the total space occupied by PerfHash itself, each Pi�1l=0 cl used by the program canbe at most log n bits long as it is an index into an array of size 9n. Since we have to storen such numbers, the size of the program PerfHash is O(n log n).The time needed to construct PerfHash is the time required to �nd k and all the ki's.Thus it will take O(n) +Pm�1i=0 O(b(i; k)) = O(n) units of expected time. The fact that thisfunction is perfect is guaranteed by the two results proved earlier. 2We close this section by pointing out why the technique of random search works forperfect hashing. The class H of function is particularly rich in functions that are \nearlyperfect." Thus, a randomly selected function from H will, with high probability, partitionthe set S evenly. A perfect hash function can then be used for each of these partitions, whichare su�ciently small. The key here is the richness of the solution space. Had the perfecthash functions been rare in H, our random selection and testing procedure would require along search through the mN possible functions from U to T .2.4.2 Universal HashingAs seen earlier, for most �xed hash functions, hashing provides us with an O(1) expectedtime and O(n) worst case time procedure for table maintenance. Universal hashing deals34
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with the possibility of biases in the input, which may result in the O(n) complexity, byrandomizing over hashing functions. In universal hashing, �rst discussed in [CW79], oneworks with an entire class, H, of hashing functions instead of picking any one single hashingfunction a priori and using it for every run. At the beginning of each run a function israndomly chosen from H and used for that run. Since it is unlikely that a \bad" functionwould be picked in most runs, for H properly de�ned, the running time averaged over manyruns is expected to be small.For any randomly selected element of H to possess a small expected access time for eachset of keys, almost all hashing functions in H should distribute the set of input keys fairlyuniformly over the hash table. We de�ne a class H of functions to be c-universal if only afraction c=m of functions in H produce a collision on any pair x, y in the universe of inputkeys. Formally, H � fh jh : [0 . . .N �1]! [0 . . .m�1]g is c-universal if 8x; y 2 [0 . . .N �1]such that x 6= y, jfhjh 2 H and h(x) = h(y)gj � cjHjm : (14)For N prime, consider the particular class H1 de�ned as follows:H1 = fha;bjha;b(x) = [(ax+ b) mod N ] mod m;a; b 2 [0 . . .N � 1]g: (15)It can be shown that the class H1 is c-universal for c = [ dN=me(N=m) ]2. Since each function in H1 isfully speci�ed by a and b, there are N2 functions in this class and O(logN) bits are requiredto pin-point any one function. Also, a random function can be chosen by randomly pickinga and b from [0 . . .N � 1].Let us assume that each hash function in H1 has the same probability of being pickedin any run, and hashing with chaining5 is used. Under these assumptions it can be shownthat the time taken by universal hashing to perform access, insert and delete operations,or any sequence of such operations, is the same as the expected time taken by hashingwith chaining when all inputs are assumed to be equally-likely [Meh84a]. In fact this resultholds for any c-universal class of functions. Thus, universal hashing, with no assumptionson the input distribution, should perform as well as hashing with chaining when the bestpossible input distribution (i.e., completely unbiased input) is assumed. Note that eventhough the end-result, as far as the performance is concerned, is the same for these twohashing paradigms, there is a considerable di�erence between the assumptions underlying5In hashing with chaining, all keys that collide at a given index i in the hash table T are stored as alinked list at T [i]. 35
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them. In universal hashing the algorithm controls the dice and not the user, and thereforethe expected complexity is O(1) even for maliciously designed inputs.Universal hashing is an example of the control randomization technique we described inSection 1.1. Control randomization is useful for other problems for which many e�cient al-gorithms exist, such as sorting. If each one of these algorithms has good average performancebut poor worst case performance, randomization over the space of available algorithms is away to eliminate the risk involved in using any single one of them.2.4.3 Some Recent ResultsThe FKS perfect hashing algorithm discussed in Section 2.4.1 results in a hash table sizethat is larger than the total number of keys. An algorithm is said to be order preserving ifit puts entries into the hash table in a prespeci�ed order, and minimal if it generates hashfunctions where the table size is the same as the total number of keys. Recently there hasbeen a urry of research activity in the areas of minimal and order preserving perfect hashfunctions [Cic80, Jae81, Cha84, LC88, CHM92, MWHC93].Czech, Havas and Majewski [CHM92] present a probabilistic algorithm for generatingorder preserving, minimal perfect hash functions. This algorithm, which runs very fast inpractice, uses expected linear time and requires a linear number of words to represent thehash function. The results of [CHM92] are further extended in [MWHC93] to a familyof elegant probabilistic algorithms that generate minimal perfect hash functions allowingarbitrary arrangements of keys in the hash table. The idea used is the following. Certaininteger congruences that correspond to acyclic r�graphs can be solved in linear time. Thisuses a result in [ER60], which states that the majority of random sparse 2�graphs are acyclic.It is extended in [MWHC93] to r�graphs, with r > 2. Perfect hash functions are obtainedby randomly mapping a set of keys into an acyclic r�graph. The mapping is achieved viauniversal hashing. Once completed the constructed set of linearly independent congruences,corresponding to the created r�graph, is solved, and the solution is a minimal perfect hashfunction. For this type of set of congruences any integer solution is legal, so the methodo�ers total freedom of choice of the address for each key.A dictionary is a data structure that allows the storage of a set S of distinct elementssuch that membership queries of the form \Is x in S?" as well as updates (i.e. \Add x to S"and \Delete x from S") can be performed e�ciently. The FKS scheme considers only staticsets where no updates to S are allowed. Another line of investigation by Dietzfelbinger36
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et al. [DKM+88, DMadH92, DGMP92] attempts to use perfect hashing for maintainingdictionaries in real-time situations. By using certain classes of universal hash functions theyshow that the FKS probabilistic method can construct a perfect hash function in �(n) time,with the probability 1�O � 1n� � [DGMP92]. The perfect hash function can be used to supporta real-time dictionary (i.e., a dictionary which allows insertions and deletions of keys, withno knowledge about subsequent events) in expected constant time.For other related developments in order preserving minimal perfect hash functions, whichare practical for very large databases, see [FCDH91, FHCD92]. A considerable body ofliterature exists on minimal and order preserving hash functions and a complete discussionis beyond the scope of this survey. An overview of some of the results outlined above can befound in [MadH90].Majewski, Wormald, Havas and Czech [MWHC93] have classi�ed numerous algorithmsfor perfect hashing into four di�erent broad categories. The �rst category is comprised ofalgorithms that rely on number theoretic methods to determine a small number of numericparameters. The very �rst discussion of perfect hashing, by Sprugnoli [Spr77], falls into thiscategory. Jaeschke's reciprocal hashing is another example from this category [Jae81].The second category consists of perfect hash functions that use segmentation of keys. Inthese algorithms, the keys are �rst distributed into buckets by a non-perfect hash function.Perfect hash functions are then computed and used for keys in each bucket. The FKS schemedescribed earlier falls in this category.The third category of perfect hashing schemes uses some kind of backtracking proceduresto search through the space of all possible functions | typically an ordering heuristic is usedto cut down the search space | in order to �nd a perfect hash function [FHCD92]. Finally,the fourth category consists of algorithms that map the given n keys into a n � n matrixand use matrix packing algorithms to compress the 2-D array into linear space [Meh84a].All four categories of perfect hashing algorithms are rich in probabilistic methods. Forexamples of algorithms from each category, we refer the reader to [MWHC93], an excellentguide to a whole panoply of perfect hashing schemes that have appeared in the literature.Perfect hashing has recently found application in the area of hardware design. In [RP91],perfect hash functions are used to construct a simple associative memory. Gupta [Gup93]uses it for response checking in digital circuit test. In both cases, random search is usedto compute a perfect hash function for a given set of keys. This hash function is thenimplemented in hardware and its constant time, collision-free indexing property is used to37
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access a pre-arranged table of values.The Nearest Neighbors problem considered next illustrates the technique of random sam-pling, which is at the heart of many randomized algorithms in computational geometry.2.5 The Nearest Neighbors ProblemWe describe Rabin's probabilistic algorithm for the Nearest Neighbors problem, one of twoprobabilistic algorithms Rabin presented in his seminal paper [Rab76]. The other, a proba-bilistic algorithm for primality testing, was the topic of Section 2.2.Consider a �nite set S = fx1; :::; xng of points in l-dimensional space, i.e., S � <l, where< denotes the reals. The Nearest Neighbors problem is to �nd a pair of points xi, xj suchthat d(xi; xj) = minfd(xp; xq); 1 � p < q � ng; (16)where d(xi; xj) is the usual distance function on <l. Notice that xi cannot equal xj and thatthere may be more than one such pair of nearest neighbors in S. We refer to the distanceseparating nearest neighbors in a set S as �min(S).A brute-force algorithm for Nearest Neighbors computes all the n(n � 1)=2 relevantmutual distances and their minimum. A recursive algorithm in [Ben80] requires O(n log n)distance computations in both the average and worst case. Rabin's probabilistic algorithm,under a certain reasonable assumption about the problem input (discussed below), has anexpected running time of O(n) and thus outperforms any known sequential algorithm. Thisalgorithm, unlike his algorithm for primality testing, is guaranteed to produce the correctanswer.The basic idea behind Rabin's algorithm is one of divide-and-conquer: decompose theset of points S into clusters, and look for nearest neighbors within each cluster. LetS = S1 [ S2 [ :::[ Sk (17)be a decomposition D of S, and ni the cardinality of Si. Let N(D) be a measure of D,de�ned as N(D) = kXi=1 ni(ni � 1)2 : (18)If it is known that a nearest neighbor pair falls within one of the Si, then N(D) representsthe number of distance computations needed to �nd the nearest neighbors of S: simply use38
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� x1 � x2x3 � � x4� x5 � x6� x7 6?�-� �Figure 4: Pictorial explanation of Rabin's Lemma 1.brute force within a cluster and then compare the nearest neighbors of each cluster. Centralto the algorithm then is how to compute, in O(n) time, a \desirable decomposition" D of S,such that a nearest neighbor pair belongs to the same cluster of D and N(D) = O(n). Asclari�ed below, the use of randomization is key to solving this problem.In the two-dimensional case, a desirable decomposition can be obtained by �rst enclosingthe points of S in a square lattice � of mesh-size �. It is not di�cult to see that by choosing� � �min(S) we are guaranteed that, at worst, nearest neighbors xi, xj lie on squares of �with a common corner. By doubling the mesh-size, we can hope to obtain a lattice in whichthese points will certainly lie within a single square. But to ensure that all adjacent squaresof � are tiled by a single 2�-by-2� square, we need to construct four lattices of mesh-size 2�.Assuming, without loss of generality, that S is a subset of the non-negative quadrant, thenthe lower, left-hand corners of these lattices should be placed at locations (0; 0), (0; �), (�; 0),and (�; �).The proof that this lattice-based technique for decomposing S works as advertised, isgiven in Lemma 1 of [Rab76]. An example of this proof, also from [Rab76], is shown inFigure 4. Here x3 and x7 are nearest neighbors, and � is greater than or equal to thedistance between them. Doubling � encloses the pair in a single square. This argumentgeneralizes to any dimensional space. 39
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We now know that �, the initial mesh size, should be chosen large enough so that nearestneighbors at worst fall in adjacent squares. On the other hand, we still need to choose �small enough so that N(D) is O(n), to obtain an e�cient algorithm. Rabin used randomsampling to arrive at such a �. In particular, he showed that if � is chosen to be �min(S1),where S1 is a randomly chosen subset of S such that jS1j = n2=3, then with a very highprobability6 the measure of the decomposition induced by the lattice of mesh-size � will beO(n) (Theorems 6 and 7 of [Rab76]). Intuitively, this random sample S1 of S is large enoughin size so that a grid of mesh-size � will contain a small number of points within any latticesquare. Thus, we have algorithm NearNeb for the Nearest Neighbors problem:NearNeb fS1 := randomly chosen subset of S such that jSj = n2=3� := �min(S1) (* how to do this is described below *)� := square lattice of mesh size � and origin (lower left-hand corner) at(0; 0), enclosing the points of S�1; . . . ;�4 := four lattices with origins (0; 0), (0; �), (�; 0) and (�; �),respectively, derived from � by doubling mesh size to 2�FOR i := 1 TO 4 ffind the decomposition S = S(i)1 [ � � � [ S(i)ki induced by �iFOR j := 1 TO ki(x(i)j ; y(i)j ) := nearest neighbor pair within lattice square S(i)jg(x; y) := nearest pair in f(x(i)j ; y(i)j )j1 � i � 4; 1 � j � kigg To show the expected running time of O(n), we �rst observe that �min(S1) can be com-puted by invoking the algorithm recursively for a second time. A subset S2 of S1 is randomlychosen so that jS2j = jS1j2=3 = n4=9. The brute-force technique can now be used to compute�min(S2) in time O(n) without resorting to any further recursion.6To be precise, Rabin proved that this probability is at least 1 � 2e�cn1=6 , where c = p2� for � > 0 aconstant. 40
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Next, consider the cost of �nding the decompositions induced by the �i. Rabin showedthat if n and the xi, normalized to integers with respect to 2�, are within \appropriateranges," then hashing can be used to �nd the decompositions in expected time O(n). Oth-erwise, sorting is needed and takes O(n log n) time. Rabin argued that, in practice, hashingis almost always applicable.We have previously argued that the expected value of N(�i), 1 � i � 4, is O(n), andhence the total number of distance computations required is O(n). This gives us the desiredrunning time of O(n) for the algorithm.There is a small probability that the remaining n� n2=3 points not in the sample S1 willcause the algorithm to behave ine�ciently. In the worst case, S1 will contain widely spacedpoints, resulting in a � that is so large that all n � n2=3 points not in S1 fall into the samesquare of the grid. As a result, the partition of S will consist of set S1 with n2=3 points andthe set S2 with the remaining n � n2=3 points. Using brute-force distance computation onthe set S2 will require O(n � n2=3)2 or O(n2) time.The Nearest Neighbors problem has illustrated the power of random sampling: an algo-rithm was found that almost always outperforms all known conventional algorithms for theproblem. The next problem we consider | interactively checking the correctness of any pro-gram that purportedly solves the graph isomorphism problem | provides another exampleof the input randomization technique.2.6 Interactive Probabilistic ProofsTwo important requirements of any proof system | a collection of axioms and inferencerules used for proving statements about some domain of discourse | are completeness andsoundness. Completeness refers to the ability to prove all theorems (i.e., all true statements)while soundness requires that the negation of a theorem is never a theorem. Thus, theability to generate proofs and to verify them can be seen as complementary tasks. Typically,veri�cation is simpler.Traditionally, P has been considered the class of problems that can be solved e�ciently,i.e., in polynomial time, and NP has been considered the class of problems that can beveri�ed e�ciently, i.e., in nondeterministic polynomial time. Recent discoveries, however, ofe�cient polynomial-time randomized algorithms for a large number of problems (such as theones discussed in this survey) have led to a new notion of e�cient computation, viz., the41
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class RP of problems that can be solved in randomized polynomial time. Likewise, a newnotion of e�cient veri�cation has emerged, viz., the class IP of problems that can be veri�edthrough the use of an interactive probabilistic proof system. We will have more to say aboutRP in Section 4. This section examines the concept of interactive probabilistic proof systemand its applications.In an interactive probabilistic proof system (interactive proof system, for short), an all-powerful prover tries to convince a skeptical veri�er that it has a solution to a di�cultproblem. The prover's unlimited computational power allows it to solve such problems\with ease." For example, a prover can potentially �nd a Hamiltonian path in a graph, ordetermine if two graphs are isomorphic. The veri�er, on the other hand, is required to be apolynomial-time randomized algorithm.The prover and the veri�er engage in a dialogue in which the veri�er can toss coinsand ask the prover to solve speci�c instances of the problem in question. The prover is onlyexpected to provide solutions to these instances and nothing else. It is required that the totallength of the messages sent back and forth between the prover and the veri�er be boundedby a polynomial in the length of the input. The objective of the veri�er is to convince itselfthat the prover does in fact have a solution to the problem.Independent formalizations of interactive proof systems by Goldwasser, Micali and Rack-o� [GMR89], and Babai and Moran [BM88, Bab85], which have been shown to be equiva-lent [GS89], allow a polynomial-time veri�er to toss coins and arbitrarily interact with theprover. In [GMR89], the outcomes of the coin tosses made by the veri�er are hidden fromthe prover. In [BM88], the proof system is considered as a game played between two play-ers called Arthur and Merlin. Once again, Arthur and Merlin (the veri�er and the prover,respectively) can toss coins and can talk back and forth. However, in this proof-system,unlike that in [GMR89], all coin tosses made by the veri�er are seen by the prover. Theseformalizations have led to the emergence of a hierarchy of probabilistic complexity classesthat generalizes NP [BM88].One can also view an interactive proof system in complexity theoretic terms where theprover tries to convince a probabilistic veri�er that a string w is in a language L. Such aproof system yields probabilistic proofs since the veri�er may accept or reject w based onoverwhelming statistical evidence rather than on certainties. Recent years have witnessed amultitude of such complexity theoretic results. For example, Ben-Or et al. in [BOGKW88]proposed a multi-prover interactive proof model. Using this model, Babai et al. [BFL90]proved that the class of languages that has a two-prover interactive proof system is non-42
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deterministic exponential time. In his paper entitled \IP = PSACE," Shamir [Sha92b]showed that the set of problems for which interactive protocols exist is precisely the set ofproblems which are solvable within polynomial space on a Turing machine. A key result forproving IP = PSPACE (and also, MIP = NEXP [BFL90]) is by Lund et al. [LFKN90]who presented a new algebraic technique for constructing interactive proof systems andproved that every language in the polynomial time hierarchy has an interactive proof system.An interactive proof system must satisfy probabilistic notions of soundness and complete-ness:Completeness. if w 2 L then, with very high probability the interaction between the proverand the veri�er must result in the veri�er concluding that w is indeed in L;Soundness. if w 62 L then, with very high probability, at the end of the protocol the veri�ermust conclude that w is not in L.The proof must be sound even if the prover acts maliciously and deliberately tries to foolthe veri�er. Several properties of interactive proof systems concerning completeness andsoundness, and methods for constructing them are investigated in [FGM+89]. Clearly, rulingby probabilistic evidence means relaxing the completeness and correctness criteria. However,it does lead to interesting applications such as program testing [BR88, BK89, BLR90].For an example of how of an interactive proof system | in particular, the veri�er compo-nent of the proof | can be used to test the correctness of a program, consider the problemof graph isomorphism. The reader should recall that the exact complexity of graph iso-morphism is not known: while, to date, no polynomial-time algorithm for this problem hasbeen discovered, a proof that it is NP-complete has been equally elusive. The followinge�cient procedure for checking the validity of a graph isomorphism program is due to Blum,Raghavan, and Kannan [BR88, BK89]. It is based on an interactive proof system for graphnon-isomorphism by Goldreich, Micali and Wigderson [GMW91].Given a program P that purportedly solves the graph isomorphism problem and twographs G and H, the veri�er wishes to determine whether P invoked on G and H (denotedP(G,H)) gives the correct result. The veri�er GI-Verify, whose pseudocode is now given,operates in a randomized and interactive manner.GI-Verify f(* Inputs: a program P and graphs G and H *)43
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IF P(G,H) = true THENfattempt to establish the isomorphismIF successful THEN RETURN "P is correct"ELSE RETURN "P is buggy"gELSEf REPEAT k timesftoss a fair coinIF coin = head THENfgenerate a random permutation G0 of GIF P(G, G0) = false THEN RETURN "P is buggy"gELSEf generate a random permutation H0 of HIF P(G, H0) = true THEN RETURN "P is buggy"gg (* end REPEAT *)RETURN "P is correct"ggGI-Verify starts by invoking P(G,H). If P pronounces G and H to be isomorphic (i.e.,P(G,H) = true), the veri�er's task is simple. It attempts to determine the correspondencebetween the vertices of G and H (how this is done will be described shortly), and returnscorrect or buggy accordingly. If, on the other hand, P pronounces G and H to be non-isomorphic (i.e., P(G,H) = false), V will put P through a series of tests. Should P fail anyone of these tests, V can conclude that P is buggy. Otherwise, V can conclude, with a highdegree of con�dence, that P is correct.Consider the case P(G,H) = true �rst. The veri�er can establish a 1-to-1 correspondencebetween the vertices of G and H, assuming that P is correct in pronouncing G and H to beisomorphic, as follows. Starting with G, arbitrarily number the vertices of G and H from1 to n. Attach a clique of n + 1 vertices to node number 1 of G to obtain the graph G1.Successively, attach a similar clique to each node i in H to obtain Hi, and test if P(G1,Hi) =true. Clearly, if G and H are isomorphic, and if node 1 in G can be mapped to node i in H,then P(G1,Hi) will return true. Thus, if P returns false for all i, P is buggy. On the other44
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hand, if P(G1,Hi) = true for some i, map node 1 of G to node i of H. Repeat this procedurefor each node j 2 [1 . . .n] of G. At any point, the inability to �nd a corresponding node in Hreects an error in program P. On the other hand, if all the vertices in G can be mapped tothose in H then the veri�er can easily test if the mapping is an isomorphism and determineif the original answer P(G, H) = true was correct.Consider the case P(G,H) = false next, i.e., P declares that G and H are not isomorphic.In this case, the veri�er relies on simple random choice and input randomization as follows.It puts P through a series of tests or rounds. In each round, V tosses a fair two-sided cointo randomly choose between G and H; randomly permutes the names of the vertices in theselected graph to obtain a graph K that is isomorphic to the selected graph; and then invokesP(G,K). We will refer to K as G0, if the selected graph is G, and as H0 is the selected graph isH. There are two cases depending on whether or not P is correct. If it is, i.e., G and H areactually non-isomorphic, then in each round we should have P(G, G0) = true when G isselected, and P(G, H0) = false when H is selected. Thus, in just a very small number ofrounds, the veri�er can gain a high degree of con�dence in the correctness of P should itrespond correctly in each round.On the other hand, if P is buggy, i.e., G and H are isomorphic, it has no way of distin-guishing between G0 and H0. This is because G0 and H0 are isomorphic and are both drawnfrom the same distribution (essentially they are random permutations of the same graph).Since P does not know whether G0 or H0 is being passed as the second argument, the only wayit can distinguish them is by chance. The probability therefore of P responding correctly(i.e., \yes" to P(G, G0) and \no" to P(G, H0)) k straight times is only 2�k. Therefore, theveri�er should only need a few rounds to determine that P is buggy.The veri�er makes use of randomization to its advantage at two crucial junctures in theabove algorithm. First, it generates random permutations G0 and H0. If G and H are isomorphicthere is no way of telling G0 and H0 apart. In addition, it randomly passes G0 or H0 as thesecond argument in each iteration thereby taxing the claimed ability of P that it can testfor graph isomorphism. The trick is so e�ective that it will catch P even if it is maliciouslycoded and is designed speci�cally to fool the veri�er.The above example illustrates the power of input randomization in program testing andinteractive proof systems. The reader is referred to [BR88, BK89] for more probabilisticcheckers for problems such as matrix multiplication, sorting and several problems in group45
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theory.It is interesting to note that in the above example, GI-Verify was able to do its taskwithout having to solve the graph isomorphism problem in any sense. Also, if the graphsare isomorphic, then the veri�er can construct the 1-1 map between the vertices of the twographs (i.e., it gains more information than a simple yes/no answer about the isomorphismquestion). However, if they are non-isomorphic, the veri�er gains no additional knowledge,other than the fact that they are non-isomorphic, about how this conclusion was reached.This latter property is crucial to the notion of zero-knowledge proofs described next.Zero-Knowledge ProofsSometimes, an additional requirement is imposed on the prover, viz., that it completelyhide the details of its solution from the veri�er. In this case, the proof is referred to as azero-knowledge proof [GMR89, BM88, Bab85, KMO89, GMW91] because, even though theveri�er has an e�cient means of verifying responses provided by the prover, at the end ithas learned nothing except that the prover is right or wrong.The concept of zero-knowledge proof has turned out to be especially useful in complexitytheory [For87, BHZ87] and cryptography [GMW87, CCD88, BOGW88, BC86]. Variousnotion of zero-knowledge, a classi�cation of these notions, and several related topics appearin [Ore87, FLS90, KMO89]. Some complexity theoretic implications of systems that admitzero-knowledge proofs are discussed in [AH91, For87, GMW91].Truly Zero-Knowledge and Multi-Prover Interactive ProofsZero-knowledge proofs, in the traditional sense, reveal one bit of information to the veri�er,viz. w 2 L or w 62 L. In [FFS87], a notion of truly zero-knowledge proof is proposed wherethe prover convinces the veri�er that it knows whether w is or is not in L, without revealingany other information. Thus, at the end of interaction, the veri�er only gains knowledgeabout the state of prover's knowledge and no information about the original membershipproblem.Ben-Or et al. [BOGKW88] propose a multi-prover interactive-proof model. In theirmodel, two provers jointly agree on a strategy and then try to convince the veri�er, in apolynomially bounded number of interactions, that a certain statement is true. Communi-cation between the provers is disallowed while they interact with the veri�er. The authors46
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are able to prove several interesting results without making any intractability assumptions.Noninteractive Zero-Knowledge ProofsA zero-knowledge interactive proof system typically has three key features that distinguish itfrom a traditional proof. The �rst is the ability of the prover and the veri�er to interact witheach other. Secondly, the veri�er can toss coins that are hidden from the prover, which meansthere is an element of \hidden randomization". Finally, the prover has the ability to solvea hard problem that the veri�er cannot solve directly. Thus, the prover embeds in its proofthe computational di�culty of some other problem. As noted by Blum et al. in [BDMP91],this requires a rather rich set of conditions to be present before a zero-knowledge interactiveproof can be devised for a problem.Another notion that is gaining popularity is that of noninteractive zero-knowledge proofs�rst proposed by Blum, Feldman, and Micali [BFM88]. A notion of non-interactive zero-knowledge proofs based on a weaker complexity assumption than that used in [BFM88] ispresented in [DSMP87]. Most of the work to date is summarized in [BDMP91].In interactive zero-knowledge proof-systems, the prover P interactively proves to theveri�er V that a certain theorem is true without giving away the details of the proof. In non-interactive zero-knowledge systems, as the name implies, interaction is forbidden: P writesdown the proofs and mails it to V for veri�cation under the assertion of zero-knowledge.Instead of interaction, P and V are allowed to share a short random string. While such aconcept of \shared randomness" has been used by others (see, for example, [GS89]), sharedrandom strings represent a much weaker requirement than most others (e.g., public cointosses) used in the literature. As observed in [BDMP91], proofs using shared randomness donot rely on foiling the adversary by the unpredictability of the coin tosses, as has been thecase so far, but rather on the \well mixedness" of the bits of the shared random string.This concludes our survey of sequential randomized algorithms. The next section willconsider distributed randomized algorithms.
47
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3 Distributed Randomized AlgorithmsIn the second half of our survey we look at several randomized algorithms for distributedcomputing, viz., the Dining Philosophers' problem (DinPhil), the Communication GuardScheduling Problem of CSP (CommGuard), the Leader Election problem (LeadElect), thePermutation Message Routing problem (MsgRoute), and the Byzantine Generals' problem(ByzAgree). We saw in the sequential case that randomization was used to obtain fasteralgorithms (sometimes at the expense of absolute accuracy), or to guarantee that the worst-case performance of an algorithm is no worse than the algorithm's expected performance.Similar motivations are also present in the distributed case, as demonstrated in this section.However an important additional concern is present: there are certain problems in distributedcomputing that have no deterministic algorithm|we have no choice but to toss coins. Theprobabilistic algorithm for the Dining Philosophers problem typi�es this situation.To obtain a notation for distributed algorithms, we augment the imperative languageused in Section 2 with constructs for shared memory access and message passing. For theformer we introduce the instruction TEST&UPDATE, which is used as follows:result := TEST&UPDATE(flag, true value, false value)The e�ect of this command is, in one instruction cycle, to assign to the variable result theold value of the shared boolean variable flag, and to assign to flag the value true valueif its old value was true and false value otherwise. For example, besides returning theold value of variable flag, the statement result := TEST&UPDATE(flag, FALSE, TRUE)inverts the value of flag.Because everything happens in one instruction cycle, the TEST&UPDATE operation cannotbe interrupted, and access to shared variables is therefore atomic. TEST&UPDATE is alsoassumed to behave fairly in the sense that no process is ever inde�nitely denied access to ashared variable in favor of other processes. As such, the phenomenon of \process starvation"is avoided.Unconditional updates to shared variables will be expressed using the standard assign-ment operator. Such assignment is also assumed to be atomic and fair.For message passing, we introduce constructs of the formSEND(expr1; . . . ; exprk) TO PRECEIVE(x1; . . . ; xl) FROM P 48
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The send command executes asynchronously and results in the transmission of the valuesof the expressions expr1; . . . ; exprk to the named process P. The receive command inputsvalues for the variables x1; . . . ; xl which have previously been transmitted by process P. Theunderlying communication medium is assumed to be faultless in that messages are receivedintact and in the order of transmission.3.1 The Dining Philosophers ProblemWe describe the randomized algorithm of Lehmann and Rabin [LR81] for the well-knownDining Philosophers problem. The problem, posed originally in [Dij71], is an anthropomor-phized resource allocation problem, and is described in [Hoa85] essentially as follows:There once were n philosophers P0, P1, . . ., Pn�1 seated around a circular table in aclockwise fashion. To the left of each philosopher laid a golden fork, and in the centerstood a large bowl of spaghetti, which was constantly replenished.A philosopher was expected to spend most of his time thinking; but when he felthungry, he picked up his own fork on his left, and plunged it into the spaghetti. Butsuch is the tangled nature of spaghetti that a second fork is required to carry it to themouth. The philosopher therefore had also to pick up the fork on his right. When hewas �nished he would put down both his forks, and continue thinking. Of course, afork can be used by only one philosopher at a time. If the other philosopher wants it,he just has to wait until the fork is available again.Additionally, any algorithm that coordinates the philosophers in the above-describedmanner must be deadlock free|if at any time there is a hungry philosopher, then eventuallysome philosopher will eat; and lockout free|every hungry philosopher eventually gets to eat.Many deterministic solutions based both on shared memory [Hoa74] and message-passingcommunication [Hoa85] have been proposed. However, none of these algorithms are both: (1)fully distributed , i.e., devoid of central memory or a central process with which every otherprocess can communicate; and (2) symmetric, i.e., all processes execute the same code andall variables, local and shared, are initialized identically. Moreover, processes in a symmetricalgorithm are unaware of their identities, and therefore cannot compare their process id withthe id of another process. 49
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P1P2 P3 P4P5BBBBBBBBB fork[1]���������fork[2] HHHHHHHHHfork[3] ���������fork[4]fork[5]Figure 5: Arrangement of philosophers and forks in the Dining Philosophers Problem.In fact, it is shown in [LR81] that no fully distributed and symmetric deterministicalgorithm for Dining Philosophers is possible. Intuitively, this is due to the existence ofan adversary scheduler that can continually thwart the philosophers in their attempts toreach agreement on who is to eat next, thereby leading to deadlock. For example, underthe inuence of an adversary scheduler, the philosophers could behave as follows: (1) all nphilosophers become hungry simultaneously; (2) they each pick up their right fork, againin synchrony; (3) because of the symmetry and the fact that each philosopher's behavioris strictly deterministic, they have no choice but to put down their forks and try again.Furthermore, the clever adversary scheduler can cause this scenario to reoccur without end,resulting in a deadlock. The problem then is one of \breaking symmetry" and this is preciselythe reason for introducing randomness into the behavior of the philosophers.In Lehmann and Rabin's algorithm, presented below as algorithm DinPhil , the simpleyet key use of randomization is in whether a philosopher waits to �rst obtain the left forkor the right fork. Communication among philosophers is done strictly in a ring fashionand uses one shared variable, fork-available[i], for each Pi { Pi+1 pair. All additionsand subtractions are to be interpreted modulo n, where n is the number of philosophers.Moreover, fork-available[i] is accessed only via the TEST&UPDATE instruction or via theunconditional assignment operation for shared variables. The con�guration of philosophersand forks for the case n = 5 is illustrated in Figure 5.50
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The algorithm can be shown to be deadlock-free in the following sense: if at any timethere is a hungry philosopher, then, with probability 1, some philosopher will eventuallyeat. The proof of this result rests on the fact that the coin tosses made by philosophersare independent random events. Thus, even if the adversary scheduler tries to bring ondeadlock, with probability 1, a combination of tosses will eventually arise that enables somephilosopher to obtain two forks. Note that the algorithm is indeed symmetric as the indexattached to a philosopher is for external naming only; philosophers themselves are not awareof their own names.DinPhil f (* algorithm for Pi *)WHILE TRUE DOf(* thinking section *)trying := trueWHILE trying DOfchoose s randomly and uniformly from f0,1gwait until TEST&UPDATE(fork-available[i� s], FALSE, FALSE)IF TEST&UPDATE(fork-available[i� s], FALSE, FALSE) THENtrying := FALSE (* s = complement of s *)ELSE fork-available[i� s] := TRUEg(* eating section *)fork-available[i� 1], fork-available[i] := TRUEgg Algorithm DinPhil is not lockout-free; intuitively, a greedy philosopher Pi can preventneighbor Pi+1 from ever eating by continually beating Pi+1 in their race to pick up theirshared fork. The algorithm can be made lockout-free by adding, for each pair of adjacentphilosophers Pi, Pi+1, two pairs of variables. One pair allows Pi to inform Pi+1 of its desireto eat (and vice versa), and the other pair is used to indicate which of Pi and Pi+1 ate last.Details can be found in [LR81]. 51
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Lehmann and Rabin's randomized algorithm was one of the �rst for distributed comput-ing, and clearly illustrated the importance of tossing coins in a new setting|without thiscapability, fully distributed and symmetric algorithms may not even exist for certain prob-lems. The next algorithm we consider, CommGuard , also illustrates the power of symmetrybreaking through randomization.3.2 Communication Guard SchedulingIn this section we present the randomized algorithm of Francez and Rodeh [FR80] for schedul-ing communication guards in a CSP-like language. In CSP [Hoa78], processes execute asyn-chronously and exchange data by a \handshaking" style of communication. There are twotypes of communication statements or commands (to use CSP terminology) in the language:input statements of the form P ?x and output statements of the form Q ! e. An input state-ment inputs a value from the named process (P ) into a local variable (x), while an outputstatement outputs the value of an expression (e) to the named process (Q). Thus, for ex-ample, the simultaneous execution of the statement P2 ?x by process P1 and the statementP1 ! e by process P2 results in the value of expression e being assigned to variable x (i.e.,x := e). The phenomenon is sometimes referred to as \distributed assignment." Inputand output statements, such as those in the example, that name each other are said to becomplementary.Statements within a process, e.g., assignment, iteration, and communication, can beexecuted nondeterministically through the use of a construct called the guarded command ,having the following syntax:[G1 =) S12 � � �2Gn =) Sn]Each statement Si has an associated communication statement Gi, called its communica-tion guard, such that Si is eligible for selection only if the process named in its communicationguard is likewise willing to communicate.The problem of communication guard scheduling can now be stated as follows: Given aset T of processes each currently waiting to execute a guarded command, construct a setof one or more pairs of processes (P;Q) from T such that P and Q have complementarycommunication guards, and no process appears in more than one pair.77A more general statement of the problem would allow processes in T to be waiting to execute anunguarded communication statement, but such a statement can always be placed in a guarded command52
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For example, consider the system of processesP1 = [P2?x =) skip2 P3!v =) skip]P2 = [P3?x =) skip2 P1!v =) skip]P3 = [P1?x =) skip2 P2!v =) skip]where skip is the CSP notation for the no-op statement. Each process Pi is willing toreceive a message from process Pi+1, or send a message to process Pi�1, where the additionand subtraction are performed modulo 3. There are three possible solutions to the guardscheduling problem in this case: the single pair of processes (Pi; Pi+1) is chosen such that Piis receiving and Pi+1 is sending, 1 � i � 3. An unsatisfactory situation would arise if eachprocess were allowed to decide to send, or if each process were allowed to decide to receive;this is tantamount to cyclic wait or deadlock.As in the Dining Philosophers problem, an algorithm for guard scheduling must satisfytwo correctness criteria. The algorithm must be deadlock free, i.e., if two processes P andQ wish to communicate with each other, then either P or Q will eventually participate ina communication (although not necessarily with each other); and starvation free, i.e., if aprocess P tries to communicate and in�nitely often some process Qi is willing to reciprocate,then P will eventually participate in a communication (the process Qi need not be the sameeach time).Several distributed implementations of guard scheduling have been proposed includ-ing [Sch78, Ber80, vdS81, Sch82, BS83]. Each of these algorithms must resort to somesymmetry breaking technique such as priority ordering of processes [Sch78, Ber80, BS83], ortimestamps [Sch78]. In fact, like the Dining Philosophers problem, the existence of a fullydistributed and symmetric deterministic algorithm for guard scheduling can be shown tobe an impossibility [FR80]. In the presence of symmetry, a fully distributed deterministicalgorithm is susceptible to the scenario in which a solution exists but is never found. For ex-ample, processes may in a cyclic fashion issue communication requests to one another; due tosymmetry, this same circular wait may reappear with every future attempt by the processesto establish communication. The lack of a fully distributed and symmetric deterministic al-gorithm for guard scheduling is indeed one of the reasons the designers of Ada [DoD83] chosean asymmetric rendezvous construct|nondeterministic choice in Ada exists only among theaccept alternatives of a select statement.We now describe the fully distributed and symmetric randomized algorithm of Francezhaving one alternative. 53
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and Rodeh [FR80]. (Other probabilistic algorithms for guard scheduling, which have \realtime response", appear in [RS84].) The algorithm is given here as the iterative procedureCommGuard, which a process P invokes upon reaching a guarded command in order toschedule itself in a communication. Upon return, a communication link between P and oneof the processes designated by P 's current guarded command will have been established, andactual data transfer can then occur.In order to simplify the presentation of the algorithm, we will assume that communicationbetween processes is non-directional. That is, a process speci�es only the name of a process ina communication guard and not the direction (i.e., input or output). Under this assumption,CommGuard can be implemented by providing each pair of processes a single shared booleanvariable flag; thus, the algorithm is fully distributed.8 All such flag have initial valueFALSE. Access to shared variables is through the TEST&UPDATE instruction, the semantics ofwhich was described in the introduction to Section 3.CommGuard f (* To schedule communications *)trying := TRUEWHILE trying DOfrandomly choose a partner with which to attempt a communicationlet flag be the shared variable between these two processesIF TEST&UPDATE(flag, FALSE, TRUE) THENtrying := FALSE (* communication established *)ELSEf wait t secondsIF NOT(TEST&UPDATE(flag, FALSE, FALSE)) THENtrying := FALSE (* communication established *)ELSE fg (* try another partner *) ggg To gain some insight into the functioning of the protocol, consider two processes P and8Without the simplifying assumption, two shared variables, flagij and flagji, are needed for each pair(Pi; Pj) of processes. Variable flagij is used to establish communication between Pi and Pj by matchingan output guard of Pi with an input guard of Pj; flagji is used in a symmetric fashion.54
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Q having complementary guards. Intuitively, P sets flag to true to inform Q of its desire tocommunicate. P will wait t seconds for Q to respond, which Q does by resetting flag back tofalse. If Q does not respond within this time interval, P will try to establish communicationwith another process. The \timeout interval" t is a prede�ned constant to the algorithm.Randomization enters into the protocol in the choice of prospective communication part-ner. If a request to communicate with a process is not reciprocated within t seconds, theWHILE loop is iterated once again, at which point another partner is chosen randomly. Thisact of giving up on a potential partner and trying another is called the \retraction phase".WHILE loop iterations of this nature persist until, if possible, a communication channel hasbeen successfully established.There are two points in CommGuard where the variable flag needs to be tested andthen immediately reset. These actions must be performed atomically within a process forthe algorithm to function correctly. The TEST&UPDATE instruction is used for this purpose.Starvation is avoided as this instruction is also fair.Algorithm CommGuard is deadlock and lockout free. The proofs are similar to those ofthe Dining Philosophers problem. The main point is that a combination of coin tosses thateventually enables two processes to establish communication can be shown to occur withprobability 1. As described above, the coin tosses take place in the retraction phase of thealgorithm and constitute a symmetry breaking technique. Symmetry breaking is also behindthe algorithm for leader election presented next.3.3 Leader ElectionThe coordination of the computers, or nodes, in a network is often the responsibility of asingle, distinguished node. This node, called the leader of the network, may enforce mutualexclusion in accessing a shared resource, provide services required by other nodes, or serveother similar functions. If the leader fails, a new leader must be selected from among thesurviving nodes of the network using an election algorithm. In this section we examine therandomized distributed algorithm of Itai and Rodeh [IR81] for leader election.The problem of electing a leader can be stated as follows. Given a set of n identicalprocesses fP0; P1; . . . ; Pn�1g connected in a ring fashion (i.e., Pi talks to Pi+1, where subscriptarithmetic is performed modulo n), elect one of these processes as the leader of the ring. Atthe end of the election, all processes must agree upon the identity of the leader. Additionally,55
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an election algorithm must guarantee termination.Most published leader election algorithms assume that asymmetry exists in the ring tothe extent that individual processes have unique names, often chosen from some totallyordered set of names. The problem of leader election is then reduced to the problem ofpicking the process with the smallest, or largest, name. See, for example, [CR79, Pet82].Several authors [Ang80, IR81] have investigated the consequences of the absence of suchtotally ordered names on election algorithms. Angluin [Ang80] has shown that there existsno deterministic algorithm to carry out elections in a ring of identical processes. Angluin'sargument is based on the observation that, in a deterministic framework, it is possible foran adversary scheduler to force all processes to be in identical states at all times. Forexample, the adversary scheduler can dictate that every message is in transit for exactly thesame amount of time, and that processes proceed in lock-step. Since processes are identical,they start out in the same state, and, by induction, end up in identical states after anyk computation steps. Thus any potential progress toward the completion of an election isthwarted by the symmetry of the ring.Thus, we once again need to toss coins to solve the problem. In the randomized algorithmLeadElect of Itai and Rodeh [IR81], the pseudocode of which is given below, each process isequipped with an independent random number generator. Additionally, all processes known, the size of the ring. The ring is presumed to preserve message order in that two messagessent from a process to its neighbor are received in the same order in which they were sent.The algorithm is easier to understand if one assumes that the processes operate syn-chronously in lock-step, and that each transmitted message reaches its destination beforethe processes execute their next computation step. Each process Pi begins by picking arandom name, an integer in f1; . . . ;Kg for some constant K > 1. Pi then propagates itsname around the ring, copying and forwarding names of other nodes that it receives. Pidetermines the names chosen by all other processes by the time it receives n messages. Thenth message received by a process is the one it sent out initially.Each process determines from its list of names whether at least one process has chosena unique name, i.e., one that was not chosen by any other process. The process with thelargest unique name is elected the leader. If no process picked a unique name, the processesrepeat their election attempt. Each attempt is called a round .LeadElect f (* algorithm used by process Pi in a ring *)56
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(* s : a list of names *)REPEAT fset s to emptyname := a random number between 1 and KREPEAT n timesfadd name to sSEND(name) TO Pi+1RECEIVE(name) FROM Pi�1ggUNTIL at least one name in s is unique(* the process that picked the largest unique name is the leader *)g Every time the processes pick random names for themselves, there is a non-zero probabil-ity p that at least one node picks a name that is chosen by no other node. (The exact valueof p depends on the value of K and on the probability distribution of the random numbergenerators.) The probability that the algorithm fails to terminate in i rounds is (1�p)i, andthe probability that the algorithm executes forever islimk!1 (1� p)k = 0: (19)In other words, the algorithm will terminate with probability 1. The expected number ofrounds for the algorithm to terminate is clearly 1=p.This algorithm can be improved in several ways. One way to improve the expectedrunning time is to change the termination condition to examine the pattern of names in theentire ring to determine if an election is possible. For instance, if in a ring where n = 5,and processes P0 and P2 chose 1, while P1, P3 and P4 chose 2, then the algorithm describedabove would procced to another round, since no single node chose a unique name. However,closer examination shows that leader election is possible in this situation: P0 can be electedbecause it is the only process, whose immediate neighbors in the ring chose 2, that chose a1. Itai and Rodeh provide a mathematical basis for the use of such techniques.Leader election in a symmetric ring is one of a variety of problems where reasonablye�cient probabilistic solutions can be found, even though a deterministic, symmetric solution57
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is impossible. It is interesting to note that symmetric leader election in a ring with anunknown number of processes has no deterministic nor probabilistic solution that guaranteesboth termination and a non-zero probability of correctness. The reader is referred to Itaiand Rabin [IR81] for a proof of this claim.The next problem we consider, message routing in a network, shows how randomizationcan be used to reduce queueing delay and to improve resiliency to faults.3.4 Message RoutingAn important measure of the performance of any message routing algorithm is how well itsolves the permutation routing problem. In permutation routing, each node in a networkis the origin of a single message destined for another node in the network, subject to theconstraint that no two messages have the same destination. The problem is to devise adistributed algorithm to route the messages to their destinations with the minimum possibledelay, with at most one message being transmitted over an edge at any time. Each instanceof the problem can be viewed as a permutation � on the set of nodes, where �(v) = w meansthat the message originating at v has to be delivered to destination w. This part of thesurvey is devoted to randomized algorithms for permutation routing.In message routing algorithms, the normally accepted unit of delay is the time neededto transmit a single message from a node to its neighbor. The assumption is that the timetaken by the nodes themselves to process individual messages and decide how they are to berouted is negligible when compared to message transmission delays. This is especially trueif the nodes can do parallel processing.The overall delay incurred by a permutation routing algorithm is obviously related tothe underlying topology. For instance, the minimum delay in sending a message from onenode to another depends on the length of the shortest path between them. Another typeof delay can occur when implementing permutations: the routing algorithm may determinethat a message needs to be transmitted over an edge that is already in use for transmittinganother message. In this case, the message is often queued up for transmission at a latertime. Such queuing delays should also be included in any measure of the total delay that amessage su�ers in transmission from its origin to its destination.Deterministic permutation routing algorithms have the common drawback that they havepoor worst-case performance. In other words, they behave badly on some speci�c permuta-58
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######## ,,,,,,,,,,,,#### ,,,,####((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((0000 0001 001100100100 0101 01110110 1000 1001 101110101100 1101 11111110Figure 6: A 4-dimensional binary cube.tions. In this section, we consider two algorithms that use randomization to break up suchinput dependencies: Valiant's [Val82] algorithm for the n-cube, and Aleluinas's [Ale82] algo-rithm for shu�e networks. A radically di�erent approach, that of randomizing the intercon-nections between nodes, is also presented. This technique, when applied to multi-butterynetworks, has been shown to outperform conventional buttery networks, particularly withrespect to tolerance to node faults [Upf89, LM89, LLM90].Message Routing on an n-CubeValiant [Val82] proposed the �rst permutation routing algorithm for an n-cube. His algorithmimplemented any permutation, with high probability, in O(logN) time. An n-cube is anetwork architecture shaped like an n-dimensional cube having N = 2n nodes, and is oftenreferred to as a (n-dimensional) hypercube.We assume that each node of an n-cube is identi�ed by an n-bit binary number v from0 to 2n � 1. A 16-node 4-cube is shown in Figure 6. Two nodes can communicate with eachother if their numbers di�er in only one bit position or dimension.To implement every permutation in O(logN) time with high probability, Valiant's algo-rithm requires each message to carry O(logN) bits of additional book-keeping information.The algorithm can implement both complete as well as partial permutations. No globalsynchronization is required (i.e., no help from a central arbiter is needed).59
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For convenience in describing the algorithm, we shall assume that the message originatingat node v is labeled v. The algorithm operates in two phases. In the �rst phase, a messageu is moved from its origin to a random intermediate destination v without regard for itsultimate destination w. The intermediate node v is chosen randomly: a fair coin with sides0 and 1 is tossed for each of the n dimensions, and the message is moved along the edge inthat dimension if a 1 shows up. Clearly, at the end of this procedure, a message may be inany node of the n-cube with equal probability.The movement of messages to their actual destinations occurs in the second phase. Inthis phase each node that holds a message chooses at random a dimension in which themessage needs to be moved in order to reach its destination, and transmits the messagealong that dimension.The pseudocode of Valiant's algorithm appears below. In this algorithm, each messageu has an associated set of book-keeping information Tu � f1; . . . ; ng. In the �rst phase, Tuconsists of the set of dimensions along which possible transmissions have not been considered.In the second phase, Tu consists of the set of dimensions along which transmissions remainto be made in order for u to reach its destination. Also, each node v maintains a set ofqueues Qv(i); 1 � i � n, containing messages to be transmitted from v to its neighbor inthe ith dimension. This neighbor, denoted by vjji, is the node whose number is obtained bytoggling the ith bit of the binary representation of v. The ith bit of the binary representationof number v is denoted by vi.In both phases, each node v maintains a set Loosev of messages that have been receivedby v but have not been assigned to any queue. A message u in Loosev with Tu = ; hasv as its destination. The notation \Transmit v" means that for each non-empty Qv(i), vtransmits the message u at the head of Qv(i) to node vjji and causes u to be added toLoosevjji. A phase is �nished when for all messages u, Tu = ;. Valiant's algorithm is said to�nish successfully if both phases of the algorithm �nish.MessageRoute Phase 1 f (* algorithm used by node v *)Loosev := fvg;Tv := f1; . . . ; ng;FOR f := 1 to F DO fFOREACH u IN Loosev WITH Tu 6= ; DO fPick i 2 Tu 60
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Tu := Tu � fig;Pick � 2 f0; 1g;IF (� = 1)fadd u to Qv(i);Loosev := Loosev � fug;g (* end IF *)g (* end FOREACH *)Transmit vg (* end FOR *)gMessageRoute Phase 2 f (* algorithm used by node v *)FOREACH message u with destination w at v DOTu := fijvi 6= wigFOR g := 1 to G DO fFOREACH u IN Loosev WITH Tu 6= ; DO fPick i 2 TuTu := Tu � fig;add u to Qv(i);Loosev := Loosev � fug;g (* end FOREACH *)Transmit vg (* end FOR *)g The algorithm is synchronous in the sense that for each iteration of both phases, all nodestransmit concurrently, and that all transmitted messages are added to the Loose sets of therecipients before the recipients begin the next iteration. This restriction, however, can berelaxed [VB81]. 61



www.manaraa.com

Also, note that the two phases run for F and G iterations, respectively. It is clear that ifG is too small, all messages might not reach their �nal destinations. Valiant shows that forboth phases to �nish successfully with probability greater than 1 � 2�Sn, for any constantS, F and G need be no greater than Cn, where C is a constant that depends on S. Inother words, both phases of the algorithm terminate correctly in O(n) time with probability1 � 2�Sn, for any constant S. The assumption of course is that individual iterations of thealgorithm in both phases run in constant time. Formally:Theorem 3 For any constant S, there is a constant C such that for F = G = Cn, bothphases of Valiant's routing algorithm �nish with probability greater than 1� 2�Sn.In both phases, each message takes a route from an initial node to another node, where aroute is de�ned as a path in the n-cube where no two edges traverse the same dimension. Itis clear that no route is longer than n. Therefore, the theorem is proved once it is establishedthat the queuing delays encountered along the routes are O(n) with probability greater than1� 2�Sn.Queuing delays can occur for a message u only if the route taken by other messages sharecommon edges with the route taken by u. Analysis shows that for C > 1, the probabilitythat any �xed route R shares edges with routes taken by Cn other messages is less thane�Cn=4 in either phase of the algorithm. Therefore, queueing delays are also O(n) providedeach of the routes that intersect R causes no more than a constant delay with similarly highprobability. This part of the proof involves the estimation of the probabilities at the tail endof a binomial distribution, and is one instance of the application of the powerful Cherno�bounds analysis technique.The reader is referred to [Val82] for the detailed probabilistic analysis, but the Cherno�bounds are repeated here for completeness. If X is the number of heads in n independenttosses of a coin where the probability of a head in a single toss is p, then Cherno�'s boundsstate that Prob [X � m] � �npm �mem�npProb [X � (1 + �)np] � e��2np=2Prob [X � (1� �)np] � e��2np=3for any 0 < � < 1, and m > np. 62
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It is interesting to note that Valiant's results are obtained by deriving bounds on theprobability that two routes intersect and on the probability that two routes share more thana given number of edges. No assumptions are made about how messages from a queue aresent. This means that the implementer is free to use any queuing discipline. The algorithmalso has the advantage that each route can be chosen independently of any other route, i.e.,no global book-keeping is needed.Message Routing on Finite Degree Interconnection NetworksValiant's algorithm is designed for hypercubes, which have the drawback that the degree ofeach node increases with the number of nodes in the network. Aleluinas [Ale82] extendedValiant's results to the common b-way shu�e networks, where each node has a �xed degreeb, regardless of the size of the network.For simplicity of exposition, let us assume b divides N , the number of nodes in the net-work. Then the network interconnections of a b-way shu�e network are as follows: Assumingthe nodes are numbered from 0 to N � 1, they are divided into N=b blocks, where the ithblock consists of nodes ib; ib+1; . . . ; ib+b�1; 0 � i � Nb �1. Each node in block i is allowedto send messages to all nodes whose address modulo Nb is i. Note that the communicationpaths are directed.In such a network, there exist paths of length d logNlog b e between any pair of nodes. However,the best deterministic routing algorithms known require O(log2N) time [LPV81] in theworst case because an appropriate choice of sources and destinations can cause congestionon individual communication lines.Aleluinas [Ale82] uses randomization to overcome this input dependency. As in Valiant'salgorithm, each node v chooses (with equal probability) an intermediate destination. How-ever, the entire path to the intermediate destination is chosen by v from among the pathsof length d logNlog b e originating at v. Node v then sends its message along that path to itsintermediate destination. This constitutes the �rst phase of the algorithm. Once a messagehas arrived at its intermediate destination, the intermediate destination picks, uniformly atrandom, a path of length d logNlog b e leading from itself to the �nal destination. The messagethen follows this path. This constitutes the second phase of the algorithm. In both phases,the routing algorithm, unlike Valiant's, must enforce a queuing discipline: there must beonly one output queue per node, and priority must be given to nodes that have traveledfewer hops, i.e., those that are late. 63
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The delay of a message is D1 + D2, where Di is the delay incurred in the ith phase.Analysis of one of the phases is su�cient, since the two phases mirror each other. There isstatistically no di�erence between the delay of messages proceeding from distinct sources torandom destinations, and the delay of messages moving to distinct destinations from sourceschosen at random.Assuming that it takes constant time to send a message, the expected delay of Aleluinas'srouting algorithm is no more than �, where� = bb� 1blogb(b� 1)NcNote that � is O(logN) when b is a constant. This matches the expected delay of Valiant'salgorithm and is accomplished using a �xed number of edges per vertex. In addition, theprobability that the delay exceeds c� for any message is no more thanb�c�(1�O(1))where O(1) ! 0 as c ! 1. Aleluinas has also analyzed the delay for the more generalsituation where multiple messages originate at each node. The reader is referred to [Ale82]for further details.Both algorithms discussed above use the technique of distributed input randomization.By sending messages to randomly selected intermediate destinations, any pockets of conges-tions arising because of certain unfavorable permutations are avoided. This approach at �rstsight, appears to be unnatural as it may send messages which actually may be very close totheir �nal destination to far away intermediate destinations. However, it is essential. For in-stance, in Valiant's algorithm, it can be shown that the second phase alone, though adequatefor most permutations, does not terminate in O(logN) steps for some permutations.Randomly Wired Multi-Buttery NetworksButtery networks are used in many parallel computers, such as the BBN Buttery andThinking Machine's CM-5, to provide paths of length logN connecting N inputs to Noutputs. For simplicity, N is usually taken to be a power of 2. The path between any inputand output is of length logN . These inputs and outputs could be processors, memory, orother resources. An instance of a buttery network with N = 8 is shown in Figure 7. Theinputs to the network are on the left, and the outputs of the network are on the right. Eachnode is a switch that accepts messages from its neighbors to the left and can send them to64
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neighboring switches to the right. The interconnections in this buttery are straightforward:each node i at level l can send messages to nodes i and j at level l+1, where j is the numberwhose binary representation di�ers from i in the l+ 1st bit position alone. For instance, inFigure 7, the switch in row 010 at level 0 can communicate with switches in rows 010 and110 at level 1.There is a simple greedy algorithm for message routing on a buttery, best described byan example. In Figure 7, a message to destination 010 (regardless of the source) is routed asfollows. The �rst edge the message traverses takes it to a node in the top four rows, so thatthe �rst bit of the row number, in this instance a 0, matches the �rst bit of the destinationrow. The second edge takes the message to a node in a row where the �rst two bits of therow number match the �rst two bits of the destination row, and the last edge takes it to itscorrect destination. In general, the ith edge ensures that bit positions 1 through i of the rowthat the message reaches match bit positions 1 through i of the destination row.The main disadvantage with butteries is that they are sensitive to edge or node failures.Another drawback is the possibility of congestion, which occurs at a node when two incomingmessages need to be sent over the same outgoing edge. A common scheme that providessome protection against edge failures as well as some reduction in congestion is to make eachedge capable of transmitting d messages concurrently, a technique called dilation, resultingin a d-dilated buttery. In other words, each outgoing edge of the buttery is replacedby a bundle of d edges. As in the buttery, however, the shortest-length path between agiven input and a given output still must go through the same sequence of nodes, and anadversary scheduler can take advantage of this fact to thwart routing algorithms. This iswhere randomization of wiring becomes an advantage. Radomized wiring is exploited inmulti-buttery networks [Upf89, LM89, LLM90]. Multi-butteries are a generalization ofboth the buttery and the dilated buttery.A buttery network can be considered to be built from splitters, each of which in turnconsist of three blocks of nodes and the edges interconnecting them. In Figure 7, the di�erentblocks are highlighted using dark shading, and one of the splitters is lightly shaded.All nodes at level 0 are in the same block. For each block B of M nodes at level l, thereare two blocks in level l + 1, Bupper and Blower. Bupper consists of the nodes in level l + 1that are in the same rows as the upper M=2 nodes of B, and Blower consists of the nodes inlevel l+ 1 that are in the same rows as the lower M=2 nodes of B. A splitter consists of theblocks B, Bupper and Blower, and the edges interconnecting them. The nodes in B are calledthe splitter inputs and the nodes in Blower and Bupper are called the splitter outputs. Any66
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edge from B to Bupper is said to be an up-edge, and any edge from B to Blower is said to bea down-edge.In a buttery, each splitter input is connected to exactly one node in the upper outputblock, and one in the lower output block. In a d-dilated buttery, each node in an inputblock is connected by d edges to a single node in the upper output block, and by another dedges to a single node in the lower output block.A multi-buttery of multiplicity d, like a d-dilated buttery, has d up-edges from eachinput node of each splitter incident on the upper splitter outputs, and another d down-edgesincident on the lower splitter outputs. In a d-dilated buttery, all d up (down) edges wouldlead to a single node in the upper (lower) output block. In a multi-buttery, however, therestriction that all d nodes be connected to the same node is relaxed. Each of the d edgescan be connected to any of the inputs of the corresponding outbut block, subject to therestriction that any two splitters with inputs at the same level are isomorphic, and that eachnode has exactly 2d inputs and 2d outputs.A randomly wired multi-buttery network of multiplicity d, on the other hand, is onein which the individual output node to which an edge of a splitter is connected is chosenat random from the output blocks, subject only to the constraint that each input node hasexactly d up-edges and d down-edges leading from it, and that each output node is fed byexactly 2d inputs. It is not necessary for two splitters at the same level to be isomorphic.The greedy routing algorithm described earlier for buttery networks can be extended tomulti-butteries. The edges traversed by a message follow the same logical sequence of up-and down-edges. However, at each node, a choice of d edges is available in a multi-buttery.Routing on multi-butteries is e�cient, as shown by Upfal's [Upf89] algorithm that imple-ments P permutations deterministically in O(logN+P ) time. Multi-butteries also provideprotection against failures [LM89], since, unlike the buttery and dilated buttery, thereare edge-disjoint and node-disjoint paths between inputs and outputs. Also, in a random-ized multibuttery, the exact wiring of the network is unknown, and therefore an adversaryscheduler cannot force excessive queuing delays to occur. Simulation results from Leighton,Lisinski and Maggs [LLM90] indicate that multi-butteries may, in practice, perform betterthan butteries and dilated butteries.A survey of e�cient randomized message routing algorithms for mesh connected comput-ers, a network architecture not addressed above, is given in [Raj91b]. In the next subsection,we consider the problem of Byzantine agreement. Besides being another example of how to67
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overcome symmetry via randomization, Byzantine agreement shows how randomization canlead to reduced communication complexity.3.5 Byzantine AgreementIn this section we examine the Byzantine Generals problem and present Ben-Or's [BO83]randomized distributed solution. The Byzantine Generals problem, known also as \Byzan-tine agreement," has received considerable attention in the literature, e.g., [PSL80, LSP82,Dol82, Rab83, CC85, Per85, Bra85]. This is due primarily to its fundamental relevance indistributed computation and its surprising complexity given the simplicity of the problemstatement.The problem concerns the ranks of the Byzantine Generals, who need to coordinatetheir rather limited military strategy; that is, they must decide whether to attack or retreatfrom encroaching enemy forces. Each general has his or her own opinion on the subject.Since their armies are widely separated, their strategy must be decided by the exchangeof messages between the generals. Unfortunately, some of the generals are traitors whosemessages cannot be trusted. We may assume, without loss of generality, that the messengersare loyal since a general with a disloyal messenger may be regarded as a traitor.Let v be a boolean value and v = 1 � v its complement. The problem of Byzantineagreement can be stated as follows: Consider a set fP1, P2, . . . , Png of asynchronouslyexecuting processes. Each process Pi has a boolean variable xi whose initial value is bi. Atmost t of the n processes are faulty. A distributed and symmetric algorithm to be followedby the correct processes is required such that the following hold on termination:Condition 1: All correct processes decide on a common value v, where a process \decidesv" by setting a private, write-once register to v. Thus, after deciding, a process can no longerchange its decision.Condition 2: If all correct processes start with the same initial value v for xi, then their�nal decision must be v.Condition 1 is usually referred to as the \Agreement condition", and condition 2 the\Validity condition". The validity condition eliminates the trivial solution where each loyalprocess simply decides on a prearranged value, say 0.The Byzantine Generals problem translates to one of consensus-building among a set of n68
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completely connected processes, some of which may be faulty. In the synchronous case, wheremessages are delivered to their destinations in one computation step, Pease et al. [PSL80]have shown that there exists an algorithm for Byzantine agreement only if less than one-thirdof the total number of processes are faulty. (The problem of Byzantine agreement amongsynchronous processes that are not completely connected has also been studied [LSP82] andconstraints on the connectivity required for a solution have been determined.)For the asynchronous case, Fischer et al. [FLP85] proved that Byzantine agreement isimpossible for deterministic processes, even if the processes are not symmetric and there isonly one faulty process. In particular, deterministic processes are susceptible to nontermi-nation. As evidenced by Ben Or's randomized algorithm, this famous \impossibility result"does not apply to processes that may toss coins; in this case, termination can be guaranteedwith probability 1. Thus, as in Dining Philosophers, guard scheduling, and leader election,we must once again resort to randomization to solve this distributed computation problem.We now describe the behavior of the faulty processes, correct processes, and the com-munication medium. Faulty processes behave unpredictably, perhaps even sending messagesaccording to some malevolent plan, or at times choosing to send no messages at all. For ex-ample, in announcing a decision to the correct processes, a faulty process may send di�erentmessages to di�erent processes. However, a faulty process cannot inuence communicationbetween correct processes, and cannot inuence the behavior of correct processes. In otherwords, it cannot alter or delete messages sent between correct processes, send messages pur-porting to originate at a correct process, alter the algorithm used by a correct process, orinuence any random choices made by a correct process.All correct processes are guaranteed to use the same algorithm. The only assumptionmade regarding the relative speeds of di�erent processes is that no process will be delayedinde�nitely between computation steps. The communication medium is such that if a correctprocess sends a message to another correct process, the message will eventually be deliveredunaltered to the intended recipient. Note that faults in the communication medium can bemodeled by viewing the sender of a message as faulty if the communication medium doesnot behave as stipulated.Ben-Or's randomized algorithm utilizes the fact that if independent random choices aremade by each process regarding the consensus value, a su�cient number of them will eventu-ally pick the same value to allow agreement among correct processes. Moreover, agreementis guaranteed if the number of faulty processes, t, is less than one-�fth the total number ofprocesses. This claim is true even in the presence of an adversary scheduler which chooses69
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the next process to make a step, or controls how long a message is in transit, as the schedulercannot inuence the outcome of coin tosses made by the processes.Each correct process Pi executes algorithm ByzAgree given below. Variable xi, initializedto bi, contains the process's current choice for the consensus value. The algorithm proceedsin rounds, and the index of the current round is stored in r. Each round has three phases.In the noti�cation phase, Pi outputs the value of xi to all other processes, and then waitsfor n � t noti�cation messages. All messages sent in the noti�cation phase are tagged withthe enumeration value N.In the proposal phase, Pi proposes a consensus value from the set f0, 1, `?'g, based onthe noti�cation messages just received. It sends its proposal to all other processes, and thenwaits for n� t proposals in return. In this phase, messages are tagged with the enumerationvalue P.Pi proposes 0 if greater than (n+t)=2 of the noti�cation messages it has received contain 0.Similarly, it proposes 1 if greater than (n + t)=2 of the noti�cation messages contain 1. Ifneither of these is the case, Pi proposes `?', a recommendation that the consensus value bechosen by each process independently by the toss of a coin. Note that Pi simply terminatesafter broadcasting its proposal if it has made a decision in the previous round. As will beshown below, if Pi decided on value v in round r, then all correct processes will decide on vin round r + 1. So it is safe for Pi to stop at this point.Finally, in the decision phase, Pi examines the proposals it just received to determinea new value for xi, which it uses in the next round. Depending on the proposals, Pi mayalso output this new value of xi to a write-once register (the process has decided). Thesigni�cance of the if-statement conditions in the proposal and decision phases is discussedbelow.The round number r is attached to all messages of round r, so the processes can dis-tinguish between messages from di�erent rounds. A process in a particular round discardsmessages it receives from processes in previous rounds, uses messages it receives from pro-cesses in the same round, and saves messages it receives from process in later rounds for useduring the correct round. Also, since for any round faulty processes may append incorrectround numbers to their messages, or not send any messages at all, no correct process shouldwait for more than n � t messages in a single phase as arrival of only n � t messages isguaranteed. 70
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ByzAgree f (* algorithm for a correct process Pi *)r := 1decided := FALSEWHILE TRUE DO f(* The Notification Phase *)SEND (N,r,xi) TO all processeswait for (n-t) notification msgs of the form (N,r,*)(* The Proposal Phase *)IF > (n+t)/2 msgs are of the form (N,r,w) for w=0 or w=1 THENSEND (P,r,w) TO all processesELSE SEND (P,r,?) TO all processesIF decided THEN stopELSE wait for (n-t) msgs of the form (P,r,*)(* The Decision Phase *)IF > t msgs are of the form (P, r, w) for w=0 or w=1 THEN fxi := wIF > 3t messages are of the form (P, r, w) THEN fdecide wdecided := TRUEgg ELSE set xi to 0 or 1 with equal probabilityr := r + 1gg 71
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The following lemmas and theorem, due to Hadzilacos [Had86], provide additional insightinto the behavior of the algorithm, and establish its correctness.Lemma 1 If a correct process proposes value v in round r, then no other correct processwill propose the value v within the same round.A process sends a message (P; r; v) if it discovers that more than (n+ t)=2 processes havechosen the value v. At most t of these processes could be faulty. Therefore, more than(n+ t)=2� t (i.e., (n� t)=2) correct processes must have chosen v. Thus, a majority of thecorrect processes have picked v. For another correct process to propose v in the same round,a majority of the correct processes must have picked v. Since a correct process sends thesame message to all processes, this is impossible.Lemma 2 If at the beginning of round r all correct processes Pi have the same value v forxi, then all correct processes will decide v in round r.In the beginning of a round, each correct process Pi sends messages notifying the othersthat it has picked value v for xi. Each correct process receives n � t messages, at most t ofwhich are from faulty processes. Therefore each process receives at least n � 2t messagesof the form (N; r; v). Since n > 5t implies n � 2t > (n + t)=2, each correct process willconsequently propose v in the proposal phase.Consider now the proposal phase. In the worst case, a process can receive t proposalsfor v from the faulty processes, and (n � 2t) proposals for v from correct processes. Since(n� 2t) > 3t if n > 5t, each correct process will decide on v.Lemma 3 If a correct process decides v in round r, then all correct processes will decide vin round r + 1.If we can now show that whenever a correct process decides v in round r, all correctprocesses propose v at the beginning of round r + 1, then Lemma 3 follows directly fromLemma 2. For a correct process Pi to decide v in round r, it must receive more than 3tproposals for v, and since at most t of these can be from faulty processes, Pi must havereceived m proposals for v from correct processes, for some m > 2t. Let us now look at anyother correct process Pj . 72
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Process Pj must, in round r, receive proposals from n � t processes. In other words,Pj receives proposals from all but t processes. Therefore, of the m correct processes thatproposed v to Pi, all but t must have had their proposals received by Pj . But m > 2t impliesm�t > t, and therefore Pj will propose v in the next round. All correct process thus proposev in round r + 1. From Lemma 2, it follows that all correct processes will decide v in roundr + 1.We now have the following correctness result for Ben-Or's algorithm [Had86].Theorem 4 Assuming that n > 5t, Ben-Or's algorithm guarantees Agreement, Validity,and, with probability 1, termination.Agreement follows from Lemma 3 and validity from Lemma 2, with r = 1. Consider nowtermination. With probability 1, enough correct processes will eventually pick a commonvalue v to permit at least one correct process Pi to decide v in some round r. By Lemma 2,all correct processes will decide v in the next round.An upper bound on the expected number of rounds is O(2n), the expected number oftosses of n coins before all n coins yield the same value. Yet if the number of faulty processesis O(pn), then the expected number of rounds is constant. This illustrates another advantageof tossing coins, since any deterministic solution to the Byzantine Generals problem cannotreach agreement in less than t+ 1 rounds [FL82].As for the per-round message complexity, every process sends a message to every otherprocess in each round. Thus, assuming that faulty processes do not send more than O(n)messages each per round, the total number of messages transmitted per round is O(n2).Ben-Or's algorithm, along with Rabin's [Rab83], was one of the �rst for reaching asyn-chronous Byzantine agreement, and it remains the simplest. Since then a number of moreelaborate, in terms of e�ciency or fault-resiliency, randomized algorithms for the problemhave been developed, including [CC85, Per85, Bra85] (see also [CD89]).This concludes our survey of distributed randomized algorithms. The next section ad-dresses some additional important aspects of randomized algorithms, and concludes.73
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4 Additional Topics of Interest and ConclusionsWe close our survey with a brief discussion of some additional important topics in randomizedalgorithms. It will be seen that most of the topics are more theoretical in nature than thematerial in the body of the survey.Complexity Theory of Randomized AlgorithmsA probabilistic Turing machine is a Turing machine with distinguished statescalled \coin-tossing states." For each coin-tossing state, the �nite control unitspeci�es two possible next states. The computation of a probabilistic Turingmachine is deterministic except that in coin-tossing states the machine tosses anunbiased coin to decide between the two possible next states [Gil77].As in the classical setting of deterministic and nondeterministic Turing machines, a theoryof computational complexity has been developed for probabilistic Turing machines. Forexample, consider the class of decision problems solvable in \polynomial" time. This classis called P for deterministic Turing machines and NP for nondeterministic Turing machines.For probabilistic Turing machines, the analogous class is called RP (or simply R by somewriters), standing for Random Polynomial time, and is characterized in [Har87] as follows:The class RP is de�ned as the class of decision problems for which there is apolynomial-time probabilistic Turing machine with the following property. If thecorrect answer for an input X is no, the machine says no with probability 1, andif the correct answer is yes, the machine says yes with probability greater than 12 .Of course, the interest in RP problems stems from the fact that for any givenX these possibly erroneous algorithms can be reiterated many times, achievinga diminishing probability of error.The class co-RP is de�ned similarly except now the probabilistic Turing machine mustrespond correctly with probability 1 on yes answers, and with probability greater than 12 onno answers. For example, by virtue of the probabilistic algorithms presented in Section 2.2,the problem of primality testing is in co-RP while the complementary problem, compositenesstesting, is in RP . Interestingly, Adleman and Huang [AH87] showed that primality testingis also in RP , thereby putting this problem in the intersection of RP and co-RP .74
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Complexity classes for randomized algorithms extend beyond RP and include the classesPP (Probabilistic Polynomial time) and BPP (Bounded Probabilistic Polynomial time). For aproblem in PP , the requisite probabilistic Turing machine guarantees the correctness of bothyes and no answers only with probability greater than 12 . In BPP , however, the probabilityof error in either a yes or no answer is bounded from above by some constant � < 12. It islikely, in fact, that BPP is much weaker than PP . For example, in BPP , the error probabilitycan be made exponentially small in the length of the input at the cost of only a constantfactor increase in the number of random bits used by the algorithm [CW89].It is not di�cult to see that we have the following hierarchies of complexity classes: P� RP � NP and RP [ co-RP � BPP � PP (but see, e.g., [Gil77, Joh90] for more in-depth discussions of randomized complexity classes). In words, the former reveals that cointossing is at least as powerful as deterministic computation, and nondeterminism is at least aspowerful as coin tossing. It is conjectured that these inclusions are strict. Empirical evidenceincludes the fact that, as of now, no one has discovered a polynomial-time randomizedalgorithm for any NP-complete problem.More recently, the quantum Turing machine has been proposed [Deu85] as a quantumphysical analogue of the probabilistic Turing machine. A quantum Turing machine, in itsmost general form, produces a random sample from a probability distribution on any giveninput. Quantum Turing machines give rise to the new complexity classes Quantum Polyno-mial time (QP) and Bounded Quantum Polynomial time (BQP) [BV93]. There is evidenceto suggest that it is impossible to simulate a quantum Turing machine with a probabilisticTuring machine without incurring an exponential slowdown [Fey82].Theory of Probabilistic AutomataJust as there is a complexity theory of probabilistic algorithms which parallels the complexitytheory of deterministic algorithms, there is a theory of probabilistic automata, e.g., [Rab63,Sal69, Paz71], which parallels the classical theory of nondeterministic automata. A seminalpaper on probabilistic automata is [Rab63], where Rabin explored �nite state probabilisticautomata. He de�ned the notion of a language accepted by a probabilistic automaton rel-ative to a cutpoint probability �. One of his key results was that there exists �nite stateprobabilistic automata that de�ne non-regular languages, even if the probabilities involvedare all rational. Salomaa [Sal69] has expanded upon the work of Rabin to produce a generaltheory of stochastic languages. 75



www.manaraa.com

Probabilistic Analysis of Conventional AlgorithmsProbabilistic analysis of a conventional, i.e., deterministic, algorithm starts with the assump-tion that the instances of a problem are drawn from a speci�ed probability distribution.Two major applications are the analysis of average-case behavior of sequential algorithmsand data structures (see [VF90] for an excellent survey), and the analysis of approximationalgorithms for coping with intractability of combinatorial optimization problems [GJ79]. Forsuch problems, the goal is to prove that some simple and fast algorithm produces \good,"near-optimal solutions. A classic example is Karp's divide-and-conquer algorithm for theTraveling Salesman problem in a plane [Kar86]. Bin packing is another problem for whichvery good approximation algorithms have been discovered.Randomized Parallel AlgorithmsAs with sequential and distributed algorithms, the performance of parallel algorithms can beimproved through the introduction of randomized behavior, i.e., coin tossing. A standardmodel of computation for parallel algorithms is the PRAM, a multi-processor architecturewhere each processor has random access to a shared memory. PRAM is actually a family ofmodels including CRCW (memory may be concurrently read and written), CREW (memorymay be read concurrently but writes are exclusive), and EREW (all reads and writes ofmemory are exclusive).The bene�ts of randomization in parallel algorithms can perhaps be best illustrated bythe results of Vishkin [Vis84] for the following problem: Given a linked list of length n,compute the distance of each element of the linked list from the end of the list. The problemhas a trivial linear-time sequential algorithm but Wyllie [Wyl79] conjectured that there isno optimal speed-up parallel algorithm for n= log n processors. Vishkin showed that suchoptimal speed-up can be obtained via randomization by exhibiting a randomized parallelalgorithm for the problem that runs in O(n=p) time using p � n=(log n log� n) processors onan EREW PRAM. (Note that for all practical purposes, the poly-logarithmic term log� ncan be viewed as a constant.)Other examples of fast randomized parallel algorithms include the sorting algorithm ofReischuk [Rei81], the algorithm for subtree isomorphism by Miller and Reif [MR89], aswell as the numerous algorithms described in the annotated bibliography. Miller and Reif'salgorithm uses O(log n) time and O(n= log n) processors, and was the �rst polylog parallel76
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algorithm for the subtree isomorphism problem.Sources of Randomness and their Impact on Randomized Algo-rithmsThroughout this survey we assumed that a randomized algorithm had the ability to tossunbiased coins. Clearly, this is a key assumption: any bias in the coin tosses can adverselya�ect the accuracy and performance of the algorithm. In this section we describe researchaimed at reducing the number of truly random bits a randomized algorithm requires, andthe usefulness of \weak sources of randomness." We also consider means of generatingbit strings that have the mathematical properties of truly random strings. Our treatmentof these topics is mainly bibliographic in nature and we refer the interested reader to theappropriate references for detailed coverage.Let A be a randomized algorithm that when supplied with n truly random bits, producesresults with a �xed error probability �. The following two questions naturally arise:1. Is it possible to reduce the error probability of A through a small increase in thenumber of truly random bits that A has at its disposal?2. Can A maintain its error probability when the random bits come from a \weak" orimperfect source of randomness?These two problems, which are commonly referred to as deterministic ampli�cation and sim-ulating probabilistic algorithms by weak random sources, have received considerable attentionin the recent literature and are discussed next.Deterministic Ampli�cationLet A be a randomized algorithm that uses q(n) random bits on an input of length n. Oneobvious way of boosting the accuracy of A is to run it repeatedly with independently chosenq(n)-bit patterns. However, this method \wastes randomness" as each random bit is usedonly once and then discarded. It turns out that A can be deterministically ampli�ed usingfewer random bits if certain types of expander graphs can be constructed.77
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In [KPS85], Karp, Pippenger, and Sipser present the �rst example of deterministic am-pli�cation. Using expander graphs, they show how the error probability of a randomizedalgorithm can be reduced to n�c, for some constant c. Their technique requires no additionalrandom bits. Let us now look at expander graphs more carefully.An (l; r; d; k)-expander is a bipartite graph from L to R such that1. jLj = l and jRj = r,2. the degree of all nodes in L is d, and3. every subset of k nodes in L is connected to more than r2 nodes in R.In general, given values of l,r,d,k it is easy to prove or disprove the existence of an(l; r; d; k)-expander through probabilistic methods [ES74] or other non-constructive argu-ments. For example, the reader may enjoy proving, using a probabilistic argument, thatthere exists (mlogm;m; 2 log2m;m)-expanders for any m [Sip88]. Replacing m by 2q certi�esthe existence of (2q2 ; 2q; 2q2; 2q)-expanders.Sipser [Sip88] reduces the deterministic ampli�cation problem to a graph theoretic prob-lem involving expander graphs. Since his reduction requires explicit construction of ex-panders, let us assume that we have a method for explicitly constructing, for any given q, a(2q2 ; 2q; 2q2; 2q)-expander. Label the left nodes in this graph with bit strings from �q2 andthe right nodes with bit strings from �q, where � = f0; 1g. Call such an expander graph Gq.Let B be the amplifying algorithm for A that uses q2(n) random bits and operates asfollows. It generates a q2(n)-bit random sequence � 2 �q2(n) and, using �, generates amultiset B(�) � �q(n). For each q(n)-bit � 2 B(�), the algorithm B runs A on � internally.The multiset B(�) is generated using the expander graph Gq(n) (also called a disperserin [CW89]).The e�ciency of algorithm B depends on the ability to e�ciently construct the multisetof neighbors of �: for a given �, clearly one should be able to generate, in polynomial time,each edge (�; �). Hence the earlier assumption about e�ciently constructing the expanderGq(n).The accuracy of B is related to certain \expansion properties" of Gq(n) (see De�nition 2.2in [CW89] for an exact formulation of these properties). Under the hypothesis that Gq(n)can be explicitly constructed, any randomized algorithm A utilizing q(n) random bits with78
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error probability 12 , can be converted into another algorithm B that uses q2(n) bits and haserror probability 2�(q2(n)�q(n)) [Sip88]. The reduction in the error probability follows from theproperties of the expander graph. It can also be shown that random bipartite multigraphsare su�ciently expanding.While Sipser's reduction assumes the constructability of expander graphs, Ajtai et al. [AKS87]show how to explicitly construct expanders for deterministic ampli�cation. Using thesemultigraphs, Cohen and Wigderson [CW89] prove that the error probability of any RP orBPP algorithm can be made exponentially small in the size of the input, with only a con-stant factor increase in the number of random bits used by the algorithm. They also considersimulations of these algorithms with weak sources of random numbers.Simulating Probabilistic Algorithms by Weak Random SourcesSince most physical sources of randomness su�er from correlation, it is natural to considerimperfect or weak sources of randomness. Such sources are called semi-random sourcesin [SV86]. In this model, each bit of the output is produced by an adversary by the ip of acoin of variable bias. The adversary can look at the previously output bits, and use these toset the bias in the coin. The bias, which helps model correlation among bits, is constrainedto be between two limits, � and (1 � �).It has been shown that if a problem can be solved by a polynomial-time Monte Carloalgorithm that has access to a true source of randomness, then the same problem can besolved using an arbitrarily weak semi-random source [VV85]. In [Vaz87], e�cient algorithmsfor using semi-random sources are presented and a technique for producing a quasi-randomsequence at an optimal rate, using two semi-random sources, is described.In [Zuc90], Zuckerman exhibits a pseudo-random generator that depends only on a weakrandom source called a �-source. A �-source, unlike a semi-random source, is asked onlyonce for R random bits and the source outputs an R-bit string such that no string has aprobability more than 2��R of being output, for some �xed � > 0. Zuckerman [Zuc91] alsoshows how to simulate BPP and approximation algorithms in polynomial time using theoutput from a �-source. Another notion of an imperfect source of randomness is introducedin [LLS87], where an imperfect source is modeled by a discrete control process.79
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Pseudo-random Number GeneratorsIn the absence of a true source of randomness, randomized algorithms almost always rely onpseudo-random number generators (PRGs) as their source of random bits. The importanceand widespread use of PRGs is exempli�ed by a recent article in the New York Times whichdeclares that:Mathematical \models" designed to predict stock prices, atmospheric warming,air-plane skin friction, chemical reactions, epidemics, population growth, the out-come of battles, the location of oil deposits and hundreds of other complex mat-ters increasingly depend on a statistical technique called Monte Carlo Simulation,which in turn depends on a reliable and inexhaustible source of random numbers[\Coin-Tossing Computers Found to Show Subtle Bias," by M.W. Browne, NewYork Times, Tue., Jan. 12, 1993].Browne goes on to point out the danger inherent in using PRGs, which was brought tolight in a recent paper by Ferrenberg, Landau, and Wong [FLW92]. This paper recounts howthe authors were puzzled when a simple mathematical model of the behavior of atoms in amagnetic crystal failed to give expected results. They traced the error to the PRG used inthe simulation. Upon further investigation, they demonstrated that �ve of the most widelyused PRGs, all of which passed a sizable battery of tests designed to test their randomness,in fact produce correlated pseudo-random numbers.PRGs work as follows. They perform a deterministic process on a short, random seed toproduce a much larger, pseudo-random string that serves as a substitute for a truly randomstring of the same size. Thus, a PRG can be thought of as a means to minimize the numberof truly random bits used by an algorithm.Much research has been conducted on conserving the number of random bits used byspeci�c PRG algorithms. An analysis justifying the use of pseudo-random substitutes for truerandom number generators in a randomized primality tester and a probabilistic algorithm forcomputing square roots is given in [Bac91]. There Bach shows that an exponentially smallerror can be obtained for these two problems by increasing the number of random bits bya constant factor. Karlo� and Raghavan [KR88] study pseudo-random substitutes that usesmall seeds for purely random choices in sorting, selection and oblivious message routing.In their seminal paper, Blum and Micali [BM84] introduced the notion of cryptographi-cally secure pseudo-random number generators. A PRG is cryptographically secure if given a80
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small segment of its output, all subsequent output cannot be predicted in polynomial time.Otherwise, a PRG is said to be predictable.A number of PRGs, both predictable and secure, have been studied in the literature.Ajtai and Wigderson [AW89] have demonstrated a family of PRGs that appear randomto any polynomial-size logic circuit of constant depth and unbounded fan-in. Such PRGscan be substituted for random number generators in applications such as building simpleapproximations to complex boolean functions [Val84a].A strong connection exists between cryptographically secure PRGs and one-way func-tions. A one-way function F (x) is a function that is easily computed, but given F (x), itshould not be possible to easily recover x, either with a small circuit or with a fast algorithm.In [ILL89], the existence of one-way functions is shown to be necessary and su�cient for theexistence of pseudo-random generators, and algorithms for pseudo-random generators thatuse one-way functions are provided.Blum et al. [BBS86] present two pseudo-random sequence generators that from smallseeds, generate long well-distributed sequences. The �rst, the 1=P generator, is completelypredictable from a small segment of its output. The second, the x2(modN) generator, iscryptographically secure as its sequence is polynomial-time unpredictable. The x2(modN)generator is based on the hardness of the quadratic residuacity problem.Babai, Nisan and Szegedy [BNS89] obtain a lower bound for the bit complexity of com-puting functions of n variables, where the ith variable resides on processor i. The commu-nication mechanism considered is a shared blackboard. Using this bound, they developedalgorithms that generate, in polynomial time, pseudo-random sequences of length n from aseed of length exp(c plog n). These pseudo-random sequences cannot be distinguished fromtruly random sequences by any logspace Turing machine. Hastad [Has90] has extended theresults of [ILL89] to the uniform case.As noted in [IZ89], cryptographically secure PRGs, though theoretically elegant, haveseveral practical problems: they depend on the unproven assumption about the one-waynessof some function, become useful only asymptotically, and are ine�cient when implemented.By contrast, the most commonly used PRGs, which typically are based on linear-congruentialgenerators and are not cryptographically secure, do quite well in practice. Impagliazzoand Zuckerman [IZ89] give a theoretical basis to this empirical �nding. They prove thattwo very simple pseudo-random number generators, which are minor modi�cations of thelinear-congruential generator and the simple shift register generator, are good for amplifying81
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the correctness of probabilistic algorithms. They also introduce a class of PRGs based onuniversal hashing functions. Some consequences of the existence of PRGs are discussedin [All87].While most of the work in this area has concentrated on generation of pseudo-randomstrings, in [GGM86], Goldreich, Goldwasser, and Micali address the issue of generatingrandom functions. They introduce a computational complexity measure of the randomness offunctions. Assuming the existence of one-way functions, a pseudo-random function generatoris presented.Sampling From a DistributionThere exists a large class of algorithms that are designed around the concept of a randomwalk. These algorithms, which borrow heavily from techniques in statistical physics, userandom walks to facilitate random sampling for approximating hard counting problems. Forexample, Jerrum and Sinclair [JS89] give a randomized approximation scheme for approxi-mating the permanent of a matrix by relating the problem to that of uniformly generatingperfect matchings in a graph. The matching problem is solved by a Markov chain whosestates are matchings in the graph.In general, the construction of small sample spaces that have some randomness propertiesis of major theoretical and practical importance. For example, in some applications it may bedesirable that in a string selected at random from a sample space, the probability distributioninduced on every k bit locations be uniform. This property of random bit strings is knownas k-wise independence and its use in the derandomization of probabilistic algorithms isdiscussed below. In [AGHP90], three simple constructions of small probability spaces on nbits for which any k bits are almost independent are presented.The general study of random walks | a topic not covered by this survey | has madean impact on several areas of algorithm design such as space-bounded algorithms, on-linealgorithms, and ampli�cation of randomness. For a study of this area, and the associ-ated background in Markov chains and techniques for proving rapid mixing | informally, aMarkov chain is rapidly mixing if it converges to its stationary distribution in a short time |the reader is referred to [KL85, Bro86, DLMV88, JS89, Bro89, KLM89, DFK91, BCD+89].82
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DerandomizationA urry of activity has recently emerged around the algorithmic design technique of deran-domization: the act of taking an e�cient randomized algorithm and removing the coin ip-ping to obtain an deterministic algorithm. The beauty of derandomization is that the result-ing deterministic algorithm retains the simplicity inherent to randomized algorithms, oftenoutperforms all previously known deterministic algorithms (e.g., [CF90, Aga90a, Aga90b]),and is always correct. This last point is particularly appealing if the randomized algorithmthat gave rise to the deterministic one is of the Monte Carlo variety.The idea of derandomization can be explained as follows [NN90]. Consider any random-ized algorithm A . One can associate a probability space (
; P ) with A , where 
 is thesample space and P is some probability measure corresponding to the probabilistic choicesthat A makes during execution. Let A (I; w) denote an execution of A on input instance Iin which A randomly chooses w from 
. Point w is called a good point for input instanceI if A (I; w) computes the correct solution. A derandomization of A means searching 
 fora good point w with respect to a given input instance I. Upon turning up such a point w,the algorithm A (I; w) is now deterministic and guaranteed to �nd the correct solution. Thecatch is, however, that the sample space is generally exponential in size, rendering exhaustivesearch infeasible.Karp and Wigderson [KW85] have devised a technique, based on the concept of k-wiseindependence, that can potentially avoid searching exponentially large sample sizes. A stringof bits is said to be k-wise independent if any k of the bits in the sequence are mutuallyindependent. Therefore, if the probabilistic choices of a given randomized algorithm arebit-strings of length n and each choice is only required to exhibit k-wise independence, thena sample space of size O(nk) su�ces. Furthermore, when k is a constant, this sample spacecan be exhaustively searched for a good point (even in parallel) in polynomial time. Karpand Wigderson, in the same paper, take advantage of k-wise independence to derive a fastparallel algorithm for the maximal independent set problem.Another approach to derandomization is the method of conditional probabilities [Spe88],which was originally introduced with the aim of converting probabilistic proofs of existenceof combinatorial structures into deterministic algorithms that can actually construct thesestructures. Applications of the method of conditional probabilities to derandomization in-clude problems in combinatorial optimization [Rag88] and parallel algorithms [MNN89].83
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On the Future of Randomized AlgorithmsThese days, randomized algorithms are appearing in the literature almost as often as con-ventional algorithms. It is safe to say that there are at least several hundred randomizedalgorithms that have already been published, and dozens more are being discovered eachyear. We expect this trend to continue since, as we have tried to demonstrate in this sur-vey, the bene�ts of coin tossing are many: e�ciency, conceptual simplicity of the resultingalgorithms, overcoming impossibility, etc. Speci�cally, we expect to see a steady stream ofrandomized algorithms in the areas of computational geometry, computational biology, graphand number theory, cryptography, robotics, design automation, operating systems (paging,task scheduling, load balancing, etc.), parallel computing, and distributed computing.AcknowledgementsWe would like to thank the anonymous referees for their critical reading of the manuscript.Their many comments and suggestions, including a number of important pointers to theliterature, substantially helped to improve the quality of the survey. We are also gratefulfor valuable interactions with Donna Albertus, Lauren Cowles, Gudjon Hermannsson, Ker-IKo, Joe Mitchell, Steve Skiena, and Joel Spencer. Finally, we would like to acknowledgethe readers of comp.theory who responded to a call-for-comments on an earlier draft ofthe paper, including Olivier Devillers, Martin Dietzfelbinger, Philippe Flajolet, DipankarGupta, George Havas, Martin Huehne, Danny Krizanc, Bohdan Majewski, Stanley Selkow,and Mark Weiss.References[AA88] N. Alon and Y. Azar. The average complexity of deterministic and random-ized parallel comparison-sorting algorithms. SIAM Journal on Computing,17:1178{1192, 1988. Even the average-case behavior of randomized parallelcomparison-sorting algorithms is shown to be no better than the worst-casebehavior of their deterministic counterparts.84
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[AAG+89] K. Abrahamson, A. Adler, R. Gilbart, L. Higham, and D. Kirkpatrick. Thebit complexity of randomized leader election on a ring. SIAM Journal onComputing, 18(1):12{29, Feb 1989. Under various assumptions about globalknowledge, the bit complexity of leader election on asynchronous unidirec-tional rings is studied.[AAK90] A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel depth-�rst search ingeneral directed graphs. SIAM Journal on Computing, 19(2):397{409, 1990.This paper gives the �rst randomized NC algorithm for depth-�rst search ina general directed graph.[AASS90] P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances inthe plane. In Proc. Sixth Ann. ACM Symp. on Computational Geometry,pages 321{331, Berkeley, CA, June 1990. The authors present a randomizedalgorithm for computing the kth smallest distance in a set of n points in theplane based on a parametric search technique of Megiddo. The algorithm'sexpected time is O(n4=3 log8=3 n).[ABI86] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithmfor the maximal independent set problem. Journal of Algorithms, 7:567{583,1986. An independent set in a graph is a set of vertices, no two of which areadjacent. Amaximal independent set is an independent set that is not properlycontained in any other independent set. The authors present a simple random-ized (Las Vegas) parallel algorithm for this problem. On an EREW-PRAM,their algorithm uses jEj processors with expected running time O(log2 n), for agraph with n nodes and jEj edges. Motivated by [KW85], they also describe aderandomization technique to convert any Monte Carlo parallel algorithm thatuses k-wise independent random choices into a deterministic parallel algorithmwithout loss of time and a polynomial increase in the number of processors forany constant k.[Adl91] L. M. Adleman. Factoring numbers using singular integers. In Proc. 23rdAnn. ACM Symp. on Theory of Computing, pages 64{71, New Orleans, LA,May 1991. Generalizing earlier work of Coopersmith, Odlyzko and Schroep-pel, Adleman puts forward an e�cient randomized algorithm for factoring theintegers. 85
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[AES90] P. K. Agarwal, H. Edelsbrunner, and O. Schwarzkopf. Euclidean minimumspanning trees and bichromatic closest pairs. In Proc. Sixth Ann. ACM Symp.on Computational Geometry, pages 203{210, Berkeley, CA, June 1990. The au-thors present a randomized algorithm to compute a bichromatic closest pair inexpected time O((nm log n logm)2=3+m log2 n+n log2m) in Euclidean three-space, which yields an O(N4=3 log4=3N) expected time algorithm for computinga Euclidean minimum spanning tree of N points in Euclidean three-space.[AES92] N. Alon, P. Erd}os, and J. H. Spencer. The Probabilistic Method. John Wileyand Sons, 1992. This paper describes the Probabilistic Method as developedby Paul Erd}os and its applications in Discrete Mathematics and TheoreticalComputer Science.[Aga90a] P. K. Agarwal. Partitioning arrangements of lines I: An e�cient determin-istic algorithm. Discrete Computational Geometry, 5:449{483, 1990. Usingderandomization techniques due to Chazelle and Friedman [CF90], Agarwalobtains a deterministic algorithm that, given a set L of n lines and a param-eter 1 < r < n, partitions the plane into O(r2) triangles, each of which meetsat most O(n=r) lines of L. He shows that the algorithm is optimal up to apolylog factor.[Aga90b] P. K. Agarwal. Partitioning arrangements of lines II: Applications. DiscreteComputational Geometry, 5:533{574, 1990. Agarwal uses his partitioning al-gorithm of [Aga90a], which he derived through derandomization, to obtaine�cient algorithms for a variety of problems involving line or line segments inthe plane (e.g., computing incidence between points and lines, implicit pointlocation, and spanning trees with low stabbing number). These algorithms aredeterministic, faster than previously known algorithms, and optimal up to apolylog factor in many cases.[AGHP90] N. Alon, O. Goldreich, J. H�astad, and R. Peralta. Simple construction ofalmost k-wise independent random variables. In Proc. 31st Ann. IEEE Symp.on Foundations of Computer Science, pages 544{553, 1990. Three simpleconstructions of small probability spaces on n bits for which any k bits arealmost independent are presented in this paper.[AH87] L. M. Adleman and M. A. Huang. Recognizing primes in polynomial time. InProc. 19th Ann. ACM Symp. on Theory of Computing, pages 462{471, 1987.86
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The probabilistic algorithms of Rabin [Rab76] and Solovay and Stassen [SS77]placed the problem of compositeness testing in the randomized complexityclass RP , and thus the problem of primality testing in co-RP . Adleman andHuang show that primality testing is also in RP , thereby putting this problemin the intersection of RP and co-RP .[AH88] L. M. Adleman and M. A. Huang. Recognizing primes in random polynomialtime. Technical report, University of Souther California, September 1988. Theauthors present a Las Vegas algorithm that looks for witnesses to composite-ness as well as those for primality.[AH90] J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory.Journal of Algorithms, 11(3), 1990. An expected O(n4) operations are neededfor the solution presented.[AH91] W. Aiello and J. Hastad. Perfect zero-knowledge languages can be recognizedin two rounds. Journal of Computer and System Sciences, 42:327{345, 1991.This paper shows that if L has a perfect zero-knowledge proof (see [FGM+89]for a de�nition), then L has a two-round interactive proof if the veri�er (of thisnew IP proof) is permitted a small probability of error in accepting a stringw as being in a language L. An earlier version of this paper appeared in Proc.28th Ann. IEEE Symp. on Foundations of Computer Science, 1987.[AKS87] M. Ajtai, J. Koml�os, and E. Szemer�edi. Deterministic simulation inLOGSPACE. In Proc. 19th Ann. ACM Symp. on Theory of Computing, pages132{140, 1987. The authors present an explicit construction of multigraphsbased on expanders for deterministic ampli�cation. Using these multigraphs,Cohen and Wigderson [CW89] show that the error probability of any RP orBPP algorithm can be made exponentially small in the size of the input, withonly a constant factor increase in the number of random bits used by thealgorithm.[Ale82] R. Aleliunas. Randomized parallel communication (preliminary version). InProc. First Ann. ACM Symp. on Principles of Distributed Computing, pages60{72, 1982. This paper presents a randomized algorithm for packet deliverythat delivers a set of n packets traveling to unique targets from unique sourcesin O(log n) expected time on a �nite degree interconnection network of nprocessors. 87
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[All87] E. W. Allender. Some consequences of the existence of pseudorandom genera-tors. In Proc. 19th Ann. ACM Symp. on Theory of Computing, pages 151{159,1987. Connections between pseudorandom generation, Kolmogorov complex-ity, and immunity properties of complexity classes are described.[ALM+92] S. Arora, C. Lund, R. Motwani, M. Sundar, and M. Szegedy. Veri�cationand hardness of approximation problems. In Proc. 33rd Ann. IEEE Symp. onFoundations of Computer Science, pages 14{23, 1992. This paper extends theresults in [AS92] to show that unless P = NP , the size of the maximum cliquecannot be approximated within a factor of n� for some � > 0, unless P = NP .[AM93] S. Arya and D. M. Mount. Approximate nearest neighbor queries in �xeddimensions. In Proc. Fourth Ann. ACM-SIAM Symp. on Discrete Algorithms,pages 271{280, Austin, TX, January 1993. A randomized algorithm for ap-proximate nearest neighbor searching is given. Consider a set S of n points ind-dimensional Euclidean space, where d is a constant independent of n. Theauthors produce a data structure, such that given any query point, a pointof S will be reported whose distance from the query point is at most a fac-tor of (1 + �) from that of the true nearest neighbor. Their algorithm runs inO(log3 n) expected time and requires O(n log n) space. The data structure canbe built in O(n2) expected time. The constant factors depend on d and �.[AN93] N. Alon and M. Naor. Coin-ipping games immune against linear-sized coali-tions. SIAM Journal on Computing, 22(2):403{417, 1993. The authors considerthe problem of distributed coin-ipping and leader-election algorithms whereevery process has complete information. They show that for every constantc < 1 there are protocols involving n processes in which no group of cn pro-cesses can inuence the outcome with probability greater than Kc, where Kis a universal constant.[Ang80] D. Angluin. Local and global properties in networks of processors. In Proc.12th Ann. ACM Symp. on Theory of Computing, pages 82{93, 1980. Thecapabilities of networks containing nodes with non-unique names are analyzed.It is shown that there exist networks in which it is not possible to elect aleader (For example, in a ring with four nodes). Other computations, such asdetermining topology, are also considered.88
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[AS89] C. Aragon and R. Seidel. Randomized search trees. In Proc. 30th Ann. IEEESymp. on Foundations of Computer Science, pages 540{545, 1989. A simplerandomized algorithm for maintaining balance in dynamic search trees is pre-sented. The expected time for an update is O(log n) on a tree with n nodes,and involves fewer than two rotations to re-balance the tree.[AS91a] P. K. Agarwal and M. Sharir. Counting circular arc intersections. In Proc.Seventh Ann. ACM Symp. on Computational Geometry, pages 10{20, NorthConway, NH, June 1991. Two randomized algorithms are presented. The �rstcounts intersections in a collection of n circles in expected time O(n3=2+�), forany � > 0. The other counts intersections in a set of n circular arcs in expectedtime O(n5=3+�), for any � > 0. If all arcs have the same radius, the expectedtime can be improved to O(n3=2+�).[AS91b] F. Aurenhammer and O. Schwarzkopf. A simple on-line randomized al-gorithm for computing higher order Voronoi diagrams. In Proc. SeventhAnn. ACM Symp. on Computational Geometry, pages 142{151, North Con-way, NH, June 1991. They present a simple on-line randomized algorithmthat can compute the order-k Voronoi Diagram for n sites in expected timeO(nk2 log n + nk log3 n) and optimal space O(k(n � k)).[AS92] S. Arora and S. Safra. Probabilistic checking proofs; a new characterizationof NP. In Proc. 33rd Ann. IEEE Symp. on Foundations of Computer Science,pages 2{11, 1992. The class NP is shown to be the class of languages L forwhich membership can be veri�ed probabilistically in polynomial time usinga logarithmic number of random bits and sub-logarithmic number of queries.[Auw89] B. Auwerbuch. Randomized distributed shortest path algorithms. In Proc.21st Ann. ACM Symp. on Theory of Computing, pages 490{500, 1989. Analgorithm that requires O(D1+�) time and O(E1+�) messages, for any � > 0, ispresented, where E is the number of edges in the graph and D is its diameter.The lower bounds are 
(D) and 
(E) respectively. The algorithm is extendedto determine shortest paths when the edges have weights.[AUY83] A. Aho, J. Ullman, and M. Yannakakis. On notations of information transferin VLSI circuits. In Proc. 15th Ann. ACM Symp. on Theory of Computing,pages 133{139, 1983. This paper presents an interesting result on probabilisticalgorithms that admit no error: the communication complexity (measured in89
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bits) of the deterministic solution can be no more than the square of themessage complexity of any randomized solution.[AV79] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for Hamiltoniancircuits and matching. Journal of Computer and System Sciences, 18(2):82{93,1979. The authors present two algorithms with O(n(log n)2) running time forHamiltonian circuits and an O(n log n) algorithm to �nd perfect matching inrandom graphs with at least c n log n edges, where c is any positive constant.[AW89] M. Ajtai and A. Wigderson. Deterministic solution of probabilistic constantdepth circuits. In S. Micali, editor, Advances in Computing Research 5: Ran-domness and Computation, Greenwich, CT, 1989. JAI Press. A family ofpseudo-random number generators which appear random to any polynomialsize logic circuit of constant depth and unbounded fan-in is demonstrated. Suchpseudorandom generators can be substituted for random-number generatorsin applications such as building simple approximations to complex booleanfunctions [Val84a].[AW92] J. Aspnes and O. Waarts. Randomized consensus in O(n log2 n) operationsper processor. In Proc. 33rd Ann. IEEE Symp. on Foundations of ComputerScience, pages 137{146, 1992. An asynchronous algorithm is presented thatachieves randomized consensus using O(n log2 n) read and write operations onshared-memory registers. This improves on the O(n2 log n) worst-case com-plexity of the best previously-known algorithm.[Bab85] L. Babai. Trading group theory for randomness. In Proc. 17th Ann. ACMSymp. on Theory of Computing, pages 421{429, 1985. This paper developesinteractive proofs to classify certain group-theoretic problems and introducesan alternative notion of interactive proofs for complexity-theoretic analysis.[Bab91] L. Babai. Local expansion of vertex-transitive graphs and random generationin �nite groups. In Proc. 23rd Ann. ACM Symp. on Theory of Computing,pages 164{174, New Orleans, LA, May 1991. Babai presents a Monte Carloalgorithm that constructs an e�cient nearly uniform random generator for�nite groups in a very general setting.[Bac91] E. Bach. Realistic analysis of some randomized algorithms. Journal of Com-puter and System Sciences, 42:30{53, 1991. Bach's analysis justi�es the use of90
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pseudo-random substitutes for true random-number generators in a randomprimality tester and a probabilistic algorithm for computing square roots.[BB88] G. Brassard and P. Bratley. Algorithmics: Theory and Practice. Prentice-Hall,1988. This book contains a very nice chapter on probabilistic algorithms fora variety of problems such as numerical integration, sorting, and set equality.[BBC+88] P. Beauchemin, G. Brassard, C. Cr�epeau, C. Goutier, and C. Pomerance. Thegeneration of random numbers that are probably prime. Journal of Cryptology,1(1):53{64, 1988. The authors make two intriguing observations on Rabin'sprobabilistic primality test [Rab76], the subject of Section 2.2 of this survey.The �rst is a provocative reason why Rabin's test is so good. It turns out thata single iteration of his algorithm has a non-negligible probability of failingonly on composite numbers that can actually be split in expected polynomialtime. Therefore, factoring would be easy if Rabin's test systematically failedwith a 25% probability on each composite integer (which, of course, it doesnot). The authors also investigate the question of how reliable Rabin's test iswhen used to generate a random integer that is probably prime, rather thanto test a speci�c integer for primality.[BBP91] J. Boyar, G. Brassard, and R. Peralta. Subquadratic zero-knowledge. InProc. 32nd Ann. IEEE Symp. on Foundations of Computer Science, pages69{78, 1991. This work reduces the communication complexity of the booleanSatis�ability problem of size n to O(n1+�n + k pn1+�n) bits while providinga probability of undetected cheating not greater than 2�k, where �n tends tozero as n tends to in�nity.[BBS86] M. Blum, L. Blum, and M. Shub. A simple and secure pseudo-random num-ber generator. SIAM Journal on Computing, 15:364{383, 1986. Two pseudo-random sequence generators are presented which, from small seeds, generatelong well-distributed sequences. The �rst, 1=P generator, is completely pre-dictable from a small segment of its output. The second, x2 (mod N) genera-tor, is cryptographically secure as its sequence is polynomial-time unpredictable(if quadratic residuacity problem is indeed hard).[BC86] G. Brassard and C. Cr�epeau. Zero-knowledge simulation of boolean circuits.In Advances in Cryptology{CRYPTO 86, Lecture Notes in Computer Science,91
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Vol. 263, pages 223{233. Springer-Verlag, 1986. An important result by Gol-dreich, Micali, and Wigderson in the design of cryptographic protocols assertsthat if one-way functions exit then every language in NP has a minimum-knowledge con�rming interactive proof. This paper proves a similar result un-der the assumption that certain number-theoretic computations are infeasible.[BCC88] G. Brassard, D. Chaum, and C. Cr�epeau. Minimum disclosure proofs of knowl-edge. Journal of Computer and System Sciences, 37:156{189, 1988. The au-thors present a generalized perfect zero-knowledge interactive proof schemethat is valid for any problem in NP . Contains protocols that allow \Peggy,the prover," to convince \Vic, the veri�er," that she has a certi�able secretwithout disclosing it. The authors use a notion they call bit-commitment, toaccomplish these minimum disclosure proofs.[BCD+89] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa. Twoapplications of inductive counting for complementation problems. SIAM Jour-nal on Computing, 18(3):559{578, June 1989. A probabilistic algorithm for s-tconnectivity in undirected graphs is presented.[BCF+91] L. Babai, G. Cooperman, L. Finkelstein, E. Luks, and A. Seress. Fast MonteCarlo algorithms for permutation groups. In Proc. 23rd Ann. ACM Symp.on Theory of Computing, pages 90{100, New Orleans, LA, May 1991. Nearlyoptimal randomized algorithms, of the Monte Carlo variety, are presented forbasic permutation group manipulation.[BCW80] M. Blum, A. Chandra, and M. Wegman. Equivalence of free boolean graphscan be decided probabilistically in polynomial time. Information ProcessingLetters, 10:80{82, 1980. The technique used is reduction to a restricted caseof the Straight-Line Program Equivalence Problem [MT85].[BDBK+90] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. Onthe power of randomization in online algorithms. In Proc. 22nd Ann. ACMSymp. on Theory of Computing, pages 379{386, Baltimore, MD, May 1990.They prove the existence of an e�cient \simulation" of randomized onlinealgorithms by deterministic ones, which is the best possible in the presence ofan adaptive adversary. 92
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[BDMP91] M. Blum, A. DeSantis, S. Micali, and G. Persiano. Noninteractive zero-knowledge. SIAM Journal on Computing, 20(6):1084{1118, 1991. A key paperthat summarizes the previous work on non-interactive zero-knowledge proofs.The concept of shared randomness is introduced, and how that can dispose ofinteraction between the prover and the veri�er is illustrated. The authors showthat non-interactive zero-knowledge proofs exist for some number-theoreticlanguages for which no e�cient algorithms are known. They also show thatif quadratic residuosity is computationally hard, satis�ability also has a non-interactive zero-knowledge proof.[BDS+92] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Appli-cations of random sampling to on-line algorithms in computational geometry.Discrete Computational Geometry, 8:51{71, 1992. This paper treats the samekind of problems as in [CS89], but in a semi-dynamic way: the data can beinitially unknown and added one by one. The analysis assumes that the pointsare inserted in a random order.[Bec82] M. Becker. A probabilistic algorithm for vertex connectivity of graphs. In-formation Processing Letters, 15(3):135{136, October 1982. A probabilisticalgorithm is presented which computes the vertex connectivity of an undi-rected graph G = (V;E) in expected time O((� log �)jV j3=2jEj)) with errorprobability at most �, provided that jEj � 12djV j2, for some constant d < 1.[Ben80] J. Bentley. Multidimensional divide-and-conquer. Communications of theACM, 23:214{229, 1980. This paper contains an n log(n) deterministic algo-rithm for �nding nearest neighbors in two-dimensional space.[Ber70] E. R. Berlekamp. Factoring polynomials over large �nite �elds.Math. Comput.,24, 1970. This paper presents algorithms for root-�nding and factorization,two problems in �nite �elds. The latter problem is reduced to the root-�ndingproblem, for which a probabilistic algorithm is given. This paper is a precursorof [Rab80b].[Ber80] A. J. Bernstein. Output guards and nondeterminism in CSP. ACM Trans.on Programming Languages and Systems, 2(2):234{238, April 1980. Bernsteinpresents a distributed algorithm for CSP output guards based on priorityordering of processes. 93
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[BFKV92] Y. Bartal, A. Fiat, H. Karlo�, and R. Vohra. New algorithms for an ancientscheduling problem. In Proc. 24th Ann. ACM Symp. on Theory of Computing,pages 51{58, Victoria, B.C., Canada, May 1992. They consider the on-lineversion of the original m-machine scheduling problem: given m machines andn positive real jobs, schedule the n jobs on m machines so as to minimizethe makespan, the completion time of the last job. In the on-line version, assoon as job j arrives, it must be assigned immediately to one of the machines.They present a competitive deterministic algorithm for all m and an optimalrandomized algorithm for the case m = 2.[BFL90] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time hastwo-prover interactive protocols. In Proc. 31st Ann. IEEE Symp. on Foun-dations of Computer Science, pages 16{25, 1990. Babai et al. prove, usingthe two-prover interactive proof systems introduced in [BOGKW88], that theclass of languages that have a two-prover interactive proof system is non-deterministic exponential time.[BFM88] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge proof sys-tems and applications. In Proc. 20th Ann. ACM Symp. on Theory of Comput-ing, pages 103{112, 1988. This paper introduces the notion of non-interactivezero-knowledge proofs where the interaction between the prover and the veri-�er is replaced by shared, random strings.[BG81] C. H. Bennett and J. Gill. Relative to a random oracle A, PA 6= NPA 6= Co-NP A with probability 1. SIAM Journal on Computing, 10(1):96{113, February1981. Several relationships are given that hold with probability 1 for languageclasses relativized to a random oracle A, including the one mentioned in thetitle.[BG89a] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority.In Proc. 30th Ann. IEEE Symp. on Foundations of Computer Science, pages468{473, 1989. A variation of zero-knowledge proofs is considered, where slowrevealing of knowledge to faulty processors is permitted. An algorithm fordistributed boolean function computations in Byzantine networks where morethan half the processors are faulty is presented. The constraint is that faultyprocessors should not be able to compute the function before the non-faultyones do. 94
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[BG89b] M. Bellare and S. Goldwasser. A new paradigm for digital signatures andmessage identi�cation based on non-interactive zero-knowledge proofs. InAdvances in Cryptology{CRYPTO 89, Lecture Notes in Computer Science,Vol. 435, pages 194{211. Springer-Verlag, 1989. This paper shows how non-interactive zero-knowledge can be used to yield a new paradigm for securedigital signature schemes (also see [GMR88]).[BGG90] M. Bellare, O. Goldreich, and S. Goldwasser. Randomness in interactiveproofs. In Proc. 31st Ann. IEEE Symp. on Foundations of Computer Sci-ence, pages 563{572, 1990. The power of randomness in interactive proofsystems, in quantitative terms, is considered. A randomness-e�cient error re-duction technique for converting one proof system into another one using thesame number of rounds is presented.[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. E�cient probabilisticallycheckable proofs and applications to approximation. In Proc. 25th Ann. ACMSymp. on Theory of Computing, pages 294{304, San Diego, CA, May 1993.Bellare et al. construct multi-prover proof systems for NP which use only a con-stant number of provers to simultaneously achieve low error, low randomnessand low answer size. As a consequence, they obtain asymptotic improvementsto approximation hardness results for a wide range of optimization problems.[BHZ87] R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactiveproofs? Information Processing Letters, 25:127{132, 1987. This is importantpaper, along with [For87], provides a method of gaining high con�dence thatcertain languages are not NP-complete.[BI86] L. Babai and A. Itai. A fast and simple randomized parallel algorithm forthe maximal independent set problem. Journal of Algorithms, 7(4):567{583,Dec 1986. An Independent Set of a graph is a set of vertices, no two ofwhich are adjacent. A maximal independent set is an independent set that isnot a proper subset of any other independent set. A simple algorithm whichis always correct and runs in O(log n) time using O(jEj dmax) processors ona Concurrent Read Concurrent Write parallel machine is shown. Here, dmaxis the maximum degree of any vertex in the graph. The earlier best was adeterministic algorithm for an Exclusive Read Exclusive Write architecturethat ran in O((log n)4) time using O((n= log n)3) processors.95
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[BK89] M. Blum and S. Kannan. Designing programs that check their work. In Proc.21st Ann. ACM Symp. on Theory of Computing, pages 86{97, May 1989. Amore detailed version of [BR88]. Also see \Designing programs that check theirwork," Technical Report, Computer Science Division, University of California,Berkeley, CA 94720, Dec. 1988.[BKRS92] A. Blum, H. Karlo�, Y. Rabani, and M. Saks. A decomposition theoren andbounds for randomized server problems. In Proc. 33rd Ann. IEEE Symp. onFoundations of Computer Science, pages 197{207, 1992. In a k-server problem,each server is at some point in a metric space. At each time step, a requestarises. Each request is a point in metric space, and must be serviced by movingone of the k servers to the point speci�ed. The cost associated with the requestis the distance that the server moves. The competitive ratio of a k-server sys-tem is the worst-case ratio of the cost of an interactive algorithm on a sequenceof inputs, to the optimal cost that would be incurred if the entire sequence wereknown in advance. The paper proves a lower bound of 
(qlog k= log log k) forthe competitive ratio of a k-server system assuming an oblivious adversary.This improves on the previously known bound of 
(log log k).[BL92] P. Beame and J. Lawry. Randomized vs. nondeterministic communicationcomplexity. In Proc. 24th Ann. ACM Symp. on Theory of Computing, pages188{199, Victoria, B.C., Canada, May 1992. The authors show that the twocomplexities are not always the same.[BLR90] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applicationsto numerical problems. In Proc. 22nd Ann. ACM Symp. on Theory of Com-puting, pages 73{83, 1990. This paper is a more recent reference on the useof randomization in program testing and adds to the collection of interestingexamples contained in [BR88, BK89].[Blu82] M. Blum. Coin ipping by telephone. In Proc. 1982 IEEE COMPCON, HighTechnology in the Information Age, pages 133{137, 1982. This paper describeshow two parties can use encryption and decryption keys in a public key cryp-tosystem to toss coins and exchange results in a distributed environment.[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequence ofpseudo-random bits. SIAM Journal on Computing, 13:850{864, 1984. This pa-96
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per introduces the notion of cryptographically secure pseudo-random numbergenerator.[BM88] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, anda hierarchy of complexity classes. Journal of Computer and System Sciences,36:254{276, 1988. The proof system is considered as a game played betweentwo players, the veri�er and the prover, called Arthur and Merlin, respectively.Arthur and Merlin can toss coins and can talk back and forth. In this typeof proof-system, all coin tosses made by the veri�er are seen by the prover. Ahierarchy of complexity classes \just above NP"is derived.[BM89] M. Bellare and S. Micali. Non-interactive oblivious transfer and applications.In Advances in Cryptology{CRYPTO 89, Lecture Notes in Computer Science,Vol. 435, pages 547{559. Springer-Verlag, 1989. Based on a complexity assump-tion, Bellare and Micali show that it is possible to build public-key cryptosys-tems in which oblivious transfer is itself implemented without any interaction.[BMO90] M. Bellare, S. Micali, and R. Ostrovsky. Perfect zero-knowledge in constantrounds. In Proc. 22nd Ann. ACM Symp. on Theory of Computing, pages482{493, 1990. This paper contains the �rst constant-round solutions with nounproven assumptions for the problems of graph isomorphism and quadraticresiduosity.[BMS86] E. Bach, G. Miller, and J. Shallit. Sums of divisors, perfect numbers andfactoring. SIAM Journal on Computing, 15(4):1143{1154, November 1986.The authors show that computing the sum of divisors of a number N is ashard as factoring N . They also give three natural sets which are in BPP(see [Gil77]) but are not known to be in RP .[BN93] R. B. Boppana and B. O. Narayanan. The biased coin problem. In Proc.25th Ann. ACM Symp. on Theory of Computing, pages 252{257, San Diego,CA, May 1993. A slightly random source (with bias �) is a sequence x =(x1; x2; � � � ; xn) of random bits such that the conditional probability that xi =1, given the outcomes of the �rst i � 1 bits, is always between 12 � � and12 + �. Given a subset of S of f0; 1gn, its �-biased probability is de�ned to bethe minimum of Pr[x 2 S] over all slightly random sources x with bias �. Theauthors show that for every �xed � < 12 and almost every subset S of f0; 1gn,the �-biased probability of S is bounded away from 0. They also show that there97
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exists a perfect-information, collective coin-ipping (leader election) protocolfor n players that tolerates �n cheaters, for every � < (2p10 � 5)=3 � :44.[BNS89] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols and logspace-hardpseudorandom sequences. In Proc. 21st Ann. ACM Symp. on Theory of Com-puting, pages 1{11, 1989. A lower bound is obtained for the bit complexity ofcomputing functions of n variables, where the ith variable resides on processori. The communication mechanism considered is a shared blackboard. Usingthis bound, algorithms are developed that generate, in polynomial time, pseu-dorandom sequences of length n from a seed of length exp(cplog n). Thesepseudorandom sequences cannot be distinguished from truly random sequencesby any logspace Turing machine.[BO83] M. Ben-Or. Another advantage of free choice: Completely asynchronous agree-ment protocols. In Proc. Second Ann. ACM Symp. on Principles of DistributedComputing, pages 27{30, 1983. Ben-Or's probabilistic algorithm for asyn-chronous Byzantine agreement, discussed in Section 3.5, was one of the �rstpublished solution to the problem, and remains the simplest. Processes tosscoins independently to reach consensus on a value. His algorithm requires thatless than one-�fth of the processes are faulty for correctness to be guaranteed.The expected number of rounds is exponential in the number of processes n,but becomes a constant when the number of faulty processes is O(pn).[BO85] M. Ben-Or. Fast asynchronous Byzantine agreement (extended abstract). InProc. Fourth Ann. ACM Symp. on Principles of Distributed Computing, pages149{151, 1985. This work extends Bracha's [Bra85] algorithm to asynchronousnetworks, initially obtaining a polynomial expected-time protocol. This proto-col is re�ned with the recursive use of Bracha's techniques to get an O(logk n)algorithm, where k is a large constant.[BOGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interac-tive proofs: How to remove the intractability assumptions. In Proc. 20th Ann.ACM Symp. on Theory of Computing, pages 113{131, 1988. A multi-proverinteractive proof model is proposed and its properties examined.[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems fornon-cryptographic fault-tolerant distributed computation. In Proc. 20th Ann.98
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ACM Symp. on Theory of Computing, pages 1{10, 1988. The problem is thesame as that in [CCD88] and the results obtained are similar.[BOL89] M. Ben-Or and N. Linial. Collective coin ipping. In S. Micali, editor, Ad-vances in Computing Research 5: Randomness and Computation, Greenwich,CT, 1989. JAI Press. Ben-Or and Linial consider the problem of obtaining adistributed coin toss, where each node is initially assigned either a head or atail. The outcome of the distributed coin toss should not be a�ected by bias atindividual nodes. To exclude the obvious trivial solution where each non-faultynode picks a predetermined value, it is required that if every node changes itsinitial value, the result of the distributed coin toss should also change. Ane�cient solution is obtained under the assumption that unfair (faulty) nodeshave complete knowledge of actions taken by all nodes.[Bop89] R. B. Boppana. Ampli�cation of probabilistic boolean formulas. In S. Micali,editor, Advances in Computing Research 5: Randomness and Computation,pages 27{45, Greenwich, CT, 1989. JAI Press. Valiant's [Val84a] algorithm isshown to be the best possible. Also, an O(k4:3n log n) algorithm for computingthe kth threshold function of n variables is given.[BP92] M. Bellare and E. Petrank. Making zero-knowledge provers e�cient. In Proc.24th Ann. ACM Symp. on Theory of Computing, pages 711{722, Victoria,B.C., Canada, May 1992. They prove that if a language possesses a statisticalzero-knowledge proof then it also possesses a statistical zero-knowledge proofin which the prover runs in probabilistic polynomial time with an NP oracle.Previously, this was only known given the existence of one-way permutations.[BR88] M. Blum and P. Raghavan. Program correctness: Can one test for it? Techni-cal Report RC 14038 (#62902), IBM T.J. Watson Research Center, September1988. They present \program checkers" for a number of interesting problemsbased on interactive proofs.[BR89a] L. Babai and L. R�onyai. Computing irreducible representations of �nitegroups. In Proc. 30th Ann. IEEE Symp. on Foundations of Computer Sci-ence, pages 93{98, Research Triangle Park, NC, October 1989. IEEE Com-puter Society Press. In this paper, the authors give a randomized (Las Vegas)polynomial time algorithm for decomposing a given representation of a �nitegroup over an algebraic number �eld into absolutely irreducible constituents.99
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[BR89b] B. Berger and J. Rompel. Simulating (logc n)-wise independence in NC. InProc. 30th Ann. IEEE Symp. on Foundations of Computer Science, ResearchTriangle Park, NC, Oct 1989. IEEE Computer Science Press. A general frame-work for the derandomization of randomized NC algorithms whose analysisuses only polylogarithmic independence is presented. This framework allowsthe derivation of NC algorithms for many problems that were not previouslyknown to be in NC .[Bra85] G. Bracha. An O(log n) expected rounds randomized Byzantine generals pro-tocol. In Proc. 17th Ann. ACM Symp. on Theory of Computing, pages 316{326,1985. Bracha shows how to partition a set of n synchronous processes (of whichat most a third are faulty) into overlapping groups of processes such that thenumber of faulty groups is at most the square root the total number of groups.Ben-Or's algorithm for Byzantine agreement (see Section 3.5) is then used toobtain an O(log n) protocol.[Bro85] A. Z. Broder. A provably secure polynomial approximation scheme for thedistributed lottery problem (extended abstract). In Proc. Fourth Ann. ACMSymp. on Principles of Distributed Computing, pages 136{148, 1985. Rabin'sclassic Byzantine agreement algorithm [Rab83] uses a coin-toss whose outcomeis available to all processes, but which cannot be predicted a priori, to reachByzantine agreement in constant time. Broder demonstrates a polynomial-time distributed mechanism to implement such a coin toss in a Byzantineenvironment.[Bro86] A. Z. Broder. How hard is it to marry at random? (On the approximationof the permanent). In Proc. 18th Ann. ACM Symp. on Theory of Comput-ing, pages 50{58, 1986. This paper provides a full-polynomial randomizedapproximation scheme (fpras) for approximating the permanent. Evaluatingthe permanent of a n � n matrix is equivalent to counting perfect matchingsin an associated bipartite graph. The problem of approximately counting theperfect matchings in a graph is reduced to that of generating them uniformly.See [JS89] for the de�nition of fpras and other related material. An erratumcan be found in Proc. 20th Ann. ACM Symp. on Theory of Computing, 1988.).[Bro89] A. Z. Broder. Generating random spanning trees. In Proc. 30th Ann. IEEESymp. on Foundations of Computer Science, pages 442{453, Oct 1989. This100
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paper solves the problem of generating a spanning tree of a connected, undi-rected graph G which as the following special property: it is chosen uniformlyat random from all possible spanning trees of G. The expected running timeof the probabilistic algorithm is O(n log n) per generated tree for almost allgraphs. It can be O(n3) per generated tree in the worst case.[BRS91a] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection.In Proc. 23rd Ann. ACM Symp. on Theory of Computing, pages 1{9, NewOrleans, LA, May 1991. The randomized complexity class PP is shown to beclosed under intersection and union.[BRS91b] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometricterrain. In Proc. 23rd Ann. ACM Symp. on Theory of Computing, pages 494{504, New Orleans, LA, May 1991. They consider the problem of a robot thathas to travel from a start location to a target in an environment with opaqueobstacles that lie in its way. The robot always knows its current absoluteposition and that of the target. It does not, however, know the positions andextents of the obstacles in advance; it �nds out about obstacles as it encountersthem. They present an optimal randomized algorithm for scenes containingarbitrary polygonal obstacles.[BS83] G. N. Buckley and A. Silberschatz. An e�ective implementation for the gen-eralized input-output construct of CSP. ACM Trans. on Programming Lan-guages and Systems, 5(2), 1983. They present a distributed algorithm for CSPoutput guards based on priority ordering of processes. Their algorithm hasthe property that two processes that can communicate and do not establishcommunication with a third process will communicate within a bounded time.[BT93] J.-D. Boissonnat and M. Teillaud. On the randomized construction of theDelaunay tree. Theoretical Computer Science, 112:339{354, 1993. An on-linerandomized algorithm which computes Delaunay triangulation and Voronoidiagrams of points in any number of dimensions is given. The complexity ofthe algorithm is optimal provided that the points are inserted in a randomorder.[BV93] E. Bernstein, , and U. Vazirani. Quantum complexity theory. In Proc.25th Ann. ACM Symp. on Theory of Computing, pages 11{20, San Diego,CA, May 1993. A quantum Turing Machine, as originally formulated by101
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Deutsch [Deu85], may be thought of as a quantum physical analogue of aprobabilistic Turing Machine: it has an in�nite tape, a �nite state control,and, in its most general form, produces a random sample from a probabilitydistribution on any given input. Bernstein and Vazirani prove the existence ofa universal quantum Turing Machine, whose simulation overhead is polynomi-ally bounded. They also present the �rst evidence that quantum TMs might bemore powerful than classical probabilistic TMs. Speci�cally, they prove thatthere is an oracle relative to which there is a language that can be acceptedin polynomial time by a quantum TM but cannot be accepted in no(logn) timeby a bounded-error probabilistic TM.[Car12] R. D. Carmichael. On composite numbers p which satisfy the Fermat con-gruence ap�1 � p. American Mathematical Monthly, 19:22{27, 1912. Letn = �i=mi=1 p�ii be the unique prime factorization of n, and let �(n) =lcmfp�1�11 (p1 � 1); . . . ; p�m�1m (pm � 1)g. Carmichael shows that n satis�es Fer-mat's congruence if and only if �(n) divides (n� 1).[CC85] B. Chor and B. Coan. A simple and e�cient randomized Byzantine agree-ment algorithm. IEEE Trans. on Software Engineering, SE-11(6):531{539,June 1985. Chor and Coan present a randomized algorithm for synchronousByzantine agreement when n � 3t+1, where n is the total number of proces-sors and t is the number of faulty processors. Their algorithm reaches agree-ment in O(t= log n) expected rounds and O(n2t= log n) expected message bits,independently of the distribution of processor failures.[CCD88] D. Chaum, C. Cr�epeau, and I. Damg�ard. Multiparty unconditionally secureprotocols. In Proc. 20th Ann. ACM Symp. on Theory of Computing, pages 11{19, 1988. Assuming the existence of authenticated secrecy channels betweeneach pair of participants (Pis), this paper shows that if at least 2n=3 Pis arehonest then a function f(x1; x2; . . .xn), where xi is known only to Pi for eachi, can be computed without any Pi revealing its information.[CCT91] K. L. Clarkson, R. Cole, and R. E. Tarjan. Randomized parallel algorithms fortrapezoidal diagrams. In Proc. Seventh Ann. ACM Symp. on ComputationalGeometry, pages 152{161, North Conway, NH, June 1991. Describes ran-domized parallel CREW PRAM algorithms for building trapezoidal diagramsof line segments in the plane. For general segments, they give an algorithm102
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requiring optimal O(A + n log n) expected work and optimal O(log n) time,where A is the number of intersecting pairs of segments.[CD89] B. Chor and C. Dwork. Randomization in Byzantine agreement. In Advancesin Computing Research 5: Randomness and Computation, pages 443{497. JAIPress, 1989. A useful survey of the myriad of randomized distributed algo-rithms for Byzantine agreement.[CDRS90] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks onweighted graphs and applications to on-line algorithms (preliminary version).In Proc. 22nd Ann. ACM Symp. on Theory of Computing, pages 369{378,Baltimore, MD, May 1990. They show that the problem of designing andanalyzing randomized on-line algorithms is closely related to the synthesis ofrandom walks on graphs with positive real costs on their edges.[CF86] J. D. Cohen and M. J. Fischer. A robust and veri�able cryptographicallysecure election scheme. In Proc. 27th Ann. IEEE Symp. on Foundations ofComputer Science, pages 372{381, 1986. A cryptographic election schemeand an IP proof for convincing participants of the correctness of the electionprocedure.[CF90] B. Chazelle and J. Friedman. A deterministic view of random sampling andits use in geometry. Combinatorica, 10(3):229{249, 1990. Using techniquesdue to Lov�asz and Spencer, the authors present a uni�ed framework for de-randomizing probabilistic algorithms that resort to repeated random samplingover a �xed domain. In the process, they establish results of independent in-terest concerning the covering of hypergraphs. Speci�cally, via a modi�cationof Lov�asz's greedy cover algorithm, they give an algorithm that, given a hyper-graph with n vertices and m edges, each of size � �n, computes an r-samplethat intersects every edge e of the hypergraph in 
(jejr=n) vertices, wherer = O((log n + logm)=�). This improves upon Lov�asz's algorithm in termsof the number of covered vertices. The tools they use for computing covers\are powerful enough to derandomize just about every probabilistic algorithmproposed in computational geometry".[CFLS93] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. Probabilistically checkabledebate systems and approximation algorithms for PSPACE-hard functions. InProc. 25th Ann. ACM Symp. on Theory of Computing, pages 305{314, San103
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Diego, CA, May 1993. A probabilistically checkable debate system (PCDS) for alanguage L consists of a probabilistic polynomial-time veri�er V and a debatebetween player 1, who claims that the input x is in L, and player 0, who claimsthat the input x is not in L. The authors show that there is a PCDS for Lin which V ips O(log n) random coins and reads O(1) bits of debate if andonly if L is in PSPACE . This characterization of PSPACE is used to showthat certain PSPACE -hard functions are as hard to approximate as they areto compute exactly.[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomnessand probabilistic communication complexity. SIAM Journal on Computing,17:230{261, 1988. Given sources of stings in which no string is \too probable",a method of extracting almost unbiased random bits is presented.[CG90] R. Canetti and O. Goldreich. Bounds on tradeo�s between randomness andcommunication complexity. In Proc. 31st Ann. IEEE Symp. on Foundationsof Computer Science, pages 766{775, 1990. Instead of considering the qual-itative question, Is an algorithm deterministic or randomized?, the authorstry to determine, quantitatively, how much randomization does an algorithmuse. Tight lower bounds on the length of the random input of parties comput-ing a function f | depending on the number of bits communicated and thedeterministic complexity of f | are derived.[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Auwerbuch. Veri�able secret sharingand achieving simultaneity in the presence of faults. In Proc. 26th Ann. IEEESymp. on Foundations of Computer Science, pages 383{395, 1985. The prob-lems of veri�able secret-sharing and simultaneous broadcast are introduced.Many problems such as distributed coin ipping can be reduced to these prob-lems.[CH89] J. Cheriyan and T. Hagerup. A randomized maximum-ow algorithm. In Proc.30th Ann. IEEE Symp. on Foundations of Computer Science, pages 118{123,Research Triangle Park, NC, October 1989. IEEE Computer Society Press. Ane�cient randomized algorithm for computing the maximum ow in a networkis presented. For a network with n vertices and m directed edges, the algorithmruns in expected time O(nm+n2(log n)3). The running time is actually O(nm)for all except relatively sparse networks. This improves upon the best known104
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deterministic solution which requires O(mn log(n2=m)) time. The algorithm,of the Las Vegas variety, is always correct and requires O(nm log n) time inthe worst case.[Cha84] C.C. Chang. The study of an ordered minimal perfect hashing scheme. Com-munications of the ACM, 27(4):384{387, Apr 1984. Chang uses hash functionsof the form h(x) = (C mod p(x)) where C is an integer constant and p(x) gen-erates a di�erent prime for each integer x. No general method for �nding p(x)is given.[Che93] J. Cheriyan. Random weighted Laplacians, Lov�asz minimum digraphs and�nding minimum separators. In Proc. Fourth Ann. ACM-SIAM Symp. onDiscrete Algorithms, pages 31{40, Austin, TX, January 1993. Cheriyan givesan O(n2:38)-time randomized algorithm for the problem of �nding a minimumX-Y separator in a digraph, and of �nding a minimum vertex cover in a bi-partite graph, thereby improving on the previous best bound of O(n2:5= log n).[CHM92] Z.J. Czech, G. Havas, and B.S. Majewski. An optimal algorithm for generatingminimal perfect hash functions. Information Processing Letters, 43(5):257{264, Oct 1992. The authors describe a randomized algorithm for generat-ing perfect hash functions that are space optimal and allow an arbitrary ar-rangement of keys in the hash table. The algorithm is based on the resultof P. Erd}os and A. R�enyi [ER60], which states that the majority of randomsparse 2�graphs are acyclic. The authors present a method of mapping a setof keys, using universal hash functions, into a random graph. Once the map-ping is computed it is re�ned to a perfect hash function in linear deterministictime. The method strongly improves on the space requirements of the otherprobabilistic methods for generating minimal perfect hash functions.[Cic80] R. Cichelli. Minimal perfect hash functions made simple. Communications ofthe ACM, 23(1):17{19, Jan 1980. A heuristic for computing a simple, fast, andmachine-independent hash function is presented. Because of these properties,several attempts have been made to extend this paper since its publication.[CL89] A. Condon and R. Lipton. On the complexity of space bound interactiveproofs. In Proc. 30th Ann. IEEE Symp. on Foundations of Computer Science,pages 462{467, 1989. Interactive proof systems that use two-way probabilistic�nite-state veri�ers can accept any recursively enumerable language if they are105
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not required to halt with high probability on rejected inputs. An upper boundon the power of IP systems that halt with high probability on all inputs isalso derived; such systems accept only a more restricted set of languages. It isshown that any language accepted by such a system is in ATIME(22O(N)).[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.The MIT Press, 1990. This well-written encyclopedic introduction to algo-rithms covers a number of randomized algorithms including those for booleanmatrix multiplication, binary search trees, primality testing, partitioning, uni-versal hashing, and parallel pre�x.[CM91] E. Cohen and N. Megiddo. Improved algorithms for linear inequalities with twovariables per inequality. In Proc. 23rd Ann. ACM Symp. on Theory of Com-puting, pages 145{155, New Orleans, LA, May 1991. A randomized polynomialtime algorithm is given for solving a system of linear inequalities wherein everyinequality the two nonzero coe�cients have opposite signs.[CPV91] P. Caspi, J. Piotrowski, and R. Velzaco. An a priori approach to the evaluationof signature analysis e�ciency. IEEE Trans. on Computers, 40(9):1068{1071,Sept 1991. This paper presents an interesting application of control random-ization for compressing the results from a digital circuit under test. Insteadof imposing any distribution on the input sequence, the linear feedback shiftregister used for compression is chosen at random.[CR79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-�nding in circular con�gurations of processors. Communications of the ACM,22(5):281{283, May 1979. They present a deterministic distributed algorithmfor �nding the largest of a set of n uniquely numbered processes in a ring. Thealgorithm uses O(n log n) messages on the average and O(n2) messages in theworst case, and does not assume that n is known a priori.[CR93] R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with op-timal resilience. In Proc. 25th Ann. ACM Symp. on Theory of Computing,pages 42{51, San Diego, CA, May 1993. The resilience of a protocol is themaximum number of faults in the presence of which the protocol meets itsspeci�cation. It is known that no Byzantine agreement (BA) protocol for nplayers (either synchronous or asynchronous) can be dn3 e-resilient, and the onlyknown (dn3 e� 1)-resilient BA protocol runs in expected exponential time. The106
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authors show that there exists a fast (dn3e � 1)-resilient BA protocol by pre-senting a randomized protocol such that, with overwhelming probability, allthe non-faulty players complete execution of the protocol in constant expectedtime.[CRS93] S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal unique elementisolation, with applications to perfect matching and related problems. In Proc.25th Ann. ACM Symp. on Theory of Computing, pages 458{467, San Diego,CA, May 1993. The authors give a randomness-e�cient RNC2 algorithm forperfect matching that uses O(log Z+log n) random bits, where Z is any givenupper bound on the number of perfect matchings in the given graph.[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in com-putational geometry, II. Discrete Computational Geometry, 4:387{421, 1989.E�cient probabilistic algorithms are presented for the problems of line seg-ment intersection, convex hull, polygon triangulation, and halfspace partitionsof point sets. Each algorithm is of the Las Vegas variety and uses the techniqueof random sampling. An earlier version of this paper appeared in Proc. FourthACM Symp. on Computational Geometry, 1988.[CW79] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journalof Computer and System Sciences, 18:143{154, 1979. This paper containsthe �rst discussion on universal hashing. An earlier version appeared in Proc.Ninth Ann. ACM Symp. on Theory of Computing, 1977, pp. 106{112.[CW89] A. Cohen and A. Wigderson. Dispensers, deterministic ampli�cation, andweak random sources (extended abstract). In Proc. 30th Ann. IEEE Symp.on Foundations of Computer Science, pages 14{25, Research Triangle Park,NC, October 1989. IEEE Computer Society Press. The authors use highlyexpanding bipartite multigraphs (dispensers) to show that the error probabil-ity of any RP or BPP algorithm can be made exponentially small in the sizeof the input at the cost of only a constant factor increase in the number ofrandom bits used by the algorithm. The simulation of these algorithms withweak sources of random numbers is also considered.[Deu85] D. Deutsch. Quantum theory, the Church-Turing principle and the univer-sal quantum computer. Proc. Royal Society of London, A400:97{117, 1985.Deutsch introduces the quantum physical computer , later referred to as the107
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\quantum Turing Machine" in [BV93], which can be thought of as a quantumphysical analogue of a probabilistic Turing Machine: it has an in�nite tape, a�nite state control, and, in its most general form, produces a random samplefrom a probability distribution on any given input.[Dev92] O. Devillers. Randomization yields simple O(n log� n) algorithms for di�cult
(n) problems. International Journal of Computational Geometry and Appli-cations, 2(1):97{111, 1992. This papers provides two O(n log� n) randomizedalgorithms. One computes the skeleton of a simple polygon and the otherthe Delaunay triangulation of a set of points knowing the euclidean minimumspanning tree. The existence of deterministic O(n log n) algorithms for bothproblems is an open problem.[DFK91] M. Dyer, A. Frieze, and R. Kannan. A random polynomial time algorithmfor approximating the volume of a convex body. Journal of the ACM, 38:1{17, 1991. A constant time oracle is assumed for determining if a point inspace is inside or outside a convex body in n-dimensional Euclidean space.The algorithm runs in time bounded by a polynomial in n, the dimension ofthe body, and 1=�, where � is the relative error bound. With probability 3=4,it �nds an approximation satisfying the error bound.[DGMP92] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash func-tions are reliable. In Proc. 19th Int'l. Colloq. on Automata, Languages and Pro-gramming, Lecture Notes in Computer Science, Vol. 623, pages 235{246, Vi-enna, Austria, July 1992. Springer-Verlag. This paper, along with [DMadH92],shows how to construct a perfect hash function in �(n) time, which is suitablefor real-time applications (Theorems 6.1 and 7.1).[Dij71] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica,1(2):115{138, 1971. Reprinted in Operating Systems Techniques, C.A.R. Hoareand R.H. Perrot, Eds., Academic Press, 1972, pp. 72{93. This paper introducesthe classical synchronization problem of Dining Philosophers.[DKM+88] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohn-ert, and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. InProc. 29th Ann. IEEE Symp. on Foundations of Computer Science, pages 524{531, White Plains, NY, Oct 1988. A randomized algorithm for the dictionaryproblem based on perfect hashing is presented.108
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[DKS88] C. Dwork, P. C. Kanellakis, and L. J. Stockmeyer. Parallel algorithms for termmatching. SIAM Journal on Computing, 17(4):711{731, 1988. In the contextof a parallel algorithm for the term matching problem, this paper shows howrandomization can be used to reduce the initial processor complexity fromO(n5) to O(M(n)), where M(n) is the processor complexity of multiplyingtwo n� n matrices.[DLMV88] P. Dagum, M. Luby, M. Mihail, and U.V. Vazirani. Polytopes, permanents andgraphs with large factors. In Proc. 29th Ann. IEEE Symp. on Foundationsof Computer Science, pages 412{421, 1988. Randomized algorithms for ap-proximating the number of perfect matchings in a graph based on a geometricreasoning are presented.[dlVKS93] F. de la Vega, S. Kannan, and M. Santha. Two probabilistic results on merg-ing. SIAM Journal on Computing, 22(2):261{271, 1993. Two probabilisticalgorithms for merging two sorted lists are presented. When m < n, the �rstalgorithm has a worst-case time better than any deterministic algorithm for1:618 < n=m < 3. The algorithm is extended to perform well for any value ofn=m.[DMadH90] M. Dietzfelbinger and F. Meyer auf der Heide. How to distribute a dictionary ina complete network. In Proc. 22nd Ann. ACM Symp. on Theory of Computing,pages 117{127, Baltimore, MD, May 1990. A randomized algorithm is given forimplementing a distributed dictionary on a complete network of p processors.The algorithm is based on hashing and uses O(n=p) expected time to executen arbitrary instructions (insert, delete, lookup). The response time for eachlookup is expected constant.[DMadH92] M. Dietzfelbinger and F. Meyer auf der Heide. Dynamic hashing in real time. InInformatik � Festschrift zum 60. Geburtstag von G�unter Holtz, Teubner-Textezur Informatik, Band 1, pages 95{119. B. G. Teubner, Stuttgart, Germany,1992. The FKS probabilistic procedure is extended to real-time. See Theo-rems 6.1 and 7.1 in [DGMP92]. A preliminary version of this paper appearedas \A new universal class of hash functions and, dynamic hashing in realtime," Proc. 17th Int'l. Colloq. on Automata, Languages and Programming,1990, pp. 6{19. 109
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[DMT92] O. Devillers, S. Meiser, and M. Teillaud. Fully dynamic Delaunay triangulationin logarithmic expected time per operation. Computational Geometry: Theoryand Applications, 2(2):55{80, 1992. This paper extends the results of [BT93]by considering the deletion of points. The Delaunay triangulation of n pointsis updated in O(log n) expected time per insertion and O(log log n) expectedtime per deletion. The insertion sequence is assumed to be in a random order,and deletions are assumed to concern any currently present point with thesame probability.[DoD83] DoD (United States Dept. of Defense). Reference Manual for the Ada Pro-gramming Language, MIL-STD 1815A, February 1983. Section 3.2 of our sur-vey discusses a randomized distributed algorithm for the scheduling of inputand output guards. The designers of Ada chose only to allow nondeterminis-tic choice among the accept alternatives of a select statement. This designdecision makes the guard scheduling problem in Ada much easier and, in par-ticular, obliviates the need for randomization.[Dol82] D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14{30, 1982. This is the introductory paper on Byzantine Generals. Dolev provesthat Byzantine agreement is achievable in any distributed system if and onlyif the number of faulty processors in the system is (1) less than one-third ofthe total number of processors; and (2) less than one-half the connectivity ofthe system's network. In cases where agreement is achievable, deterministicalgorithms for obtaining it are given.[DS90] C. Dwork and L. Stockmeyer. The time complexity gap for 2-way probabilistic�nite-state automata. SIAM Journal on Computing, 19(6):1011{1023, 1990.Among other results, this paper shows that any 2-way probabilistic �nite au-tomaton recognizing a non-regular language must use exponential expectedtime in�nitely often. Since any regular language can be recognized in lineartime, a time-complexity gap is established. Similar results were published inthe paper entitled \On the Power of 2-Way Probabilistic Finite Automata,"which appeared in Proc. 30th Ann. IEEE Symp. on Foundations of ComputerScience, 1989.[DSMP87] A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledgeproof-systems. In Advances in Cryptology{CRYPTO 87, Lecture Notes in110
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Computer Science, Vol. 293, pages 52{72. Springer-Verlag, 1987. This pa-per introduces the notion of non-interactive zero-knowledge proofs based on aweaker complexity assumption than that used in [BFM88].[DSMP88] A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledgeproof-systems with preprocessing. In Advances in Cryptology{CRYPTO 88,Lecture Notes in Computer Science, Vol. 403, pages 269{283. Springer-Verlag,1988. The authors show that if any one-way function exists after an interactivepreprocessing stage then any su�ciently short theorem can be proven non-interactively in zero-knowledge.[DSS90] C. Dwork, D. Shmoys, and L. Stockmeyer. Flipping persuasively in constanttime. SIAM Journal on Computing, 19(2):472{499, 1990. An e�cient random-ized protocol is presented that tolerates up to n=(log n) malicious processorsthat requires constant expected number of rounds to achieve a distributed cointoss. Also given is a Byzantine Generals algorithm that tolerates n=(log n) fail-ures and runs in constant expected number of rounds. A preliminary versionof this paper appeared in Proc. 27th Ann. IEEE Symp. on Foundations ofComputer Science, 1986.[DSY90] A. De Santis and M. Yung. Cryptographic applications of non-interactivemetaproofs and many-prover systems. In Advances in Cryptology{CRYPTO90, Lecture Notes in Computer Science, Vol. 537. Springer-Verlag, 1990. Theauthors show how many provers can share the same random string in provingmultiple theorems non-interactively in zero-knowledge.[ER60] P. Erd}os and A. R�enyi. On the evolution of random graphs. Publ. Math. Inst.Hung. Acad. Sci., 5:17{61, 1960. A seminal paper on random graphs. Reprintedin Paul Erd}os: The Art of Counting. Selected Writings, J.H. Spencer, Ed.,Vol. 5 of the series Mathematicians of Our Time, MIT Press, 1973, pp. 574{617.[ES74] P. Erd}os and J. Spencer. Probabilistic Methods in Combinatorics. AcademicPress, New York and London, 1974. Recognized experts in the �eld present asmall, power packed monograph on non-constructive probabilistic methods incombinatorics. Our algorithm for networks without large hierarchies is basedon the discussion in Chapter 1 of this book. Other highlights include, Ramsey'stheorems and evolution of random graphs.111
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[FCDH91] E. Fox, Q.F. Chen, A. Daoud, and L.S. Heath. Order preserving minimalperfect hash functions and information retrieval. ACM Trans. on InformationSystems, 9(2):281{308, July 1991. This algorithm combines the techniques ofembedding the keys into an r�graph and two-level hashing to design hashfunctions that are optimal in terms of hashing time and space utilization. Thealgorithm to generate the hash functions uses near-optimal space and time.Any desired order can be maintained.[Fey82] R. P. Feynman. Simulating physics with computers. International Journalof Theoretical Physics, 21(6/7):467{488, 1982. Feynman points out the curi-ous problem that it appears to be impossible to simulate a general quantumphysical system on a probabilistic Turing Machine without an exponentialslowdown, even if the quantum physical system to be simulated is discrete(like some kind of quantum cellular automaton).[FFS87] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. In Proc.19th Ann. ACM Symp. on Theory of Computing, pages 210{217, 1987. Zero-knowledge proofs, in the traditional sense, reveal 1 bit of information to theveri�er, viz. w 2 L or w 62 L. This paper proposes the notion of \truly zeroknowledge" proofs where the prover convinces the veri�er that he/she knowswhether w is or is not in L, without revealing any other information. An RSA-like scheme based on the di�culty of factoring, which is much more e�cientthan RSA, is also presented.[FGM+89] M. F�urer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On com-pleteness and soundness in interactive proof systems. In S. Micali, editor,Advances in Computing Research 5: Randomness and Computation, pages429{442. JAI Press, Greenwich, CT, 1989. An interactive proof system for alanguage L is said to have perfect completeness if the veri�er always acceptsw if w 2 L. This paper proves that any language having an interactive, pos-sibly unbounded, proof has one with perfect completeness. Only languages inNP have interactive proofs with perfect soundness. This paper �rst appearedunder the title \Interactive proof system: provers that never fail and randomselection," authored by O. Goldreich, Y. Mansour and M. Sipser, in Proc. 28thAnn. IEEE Symp. on Foundations of Computer Science, 1987, pp. 449{461.112
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[FH84] V. A. Feldman and D. Harel. A probabilistic dynamic logic. Journal of Com-puter and System Sciences, 28(2):193{215, 1984. This paper de�nes a formallogic PrDL to reason about probabilistic programs. It extends the semanticsof Kozen [Koz81] formulas involving probabilistic programs.[FHCD92] E. Fox, L.S. Heath, Q.F. Chen, and A. Daoud. Practical minimal perfect hashfunctions for large databases. Communications of the ACM, 35(1):105{121,January 1992. This paper presents two randomized algorithm for minimalperfect hashing functions that are designed for use with data bases with asmany as a million keys. The algorithms have been experimentally evaluated.The �rst algorithm generates hash functions that are less than O(n) computerwords long, and the second generates functions that approach the theoreticallower bound of 
(n= log n) words. This work is a predecessor of [FCDH91].[FKS82] M. L. Fredman, J. Koml�os, and E. Szemeredi. Sorting a sparse table with O(1)worst case access time. In Proc. 23rd Ann. IEEE Symp. on Foundations ofComputer Science, pages 165{169, 1982. This paper proves many fundamentalresults that are essential for constructing a perfect hashing function for a givenset of keys.[FL82] M. J. Fischer and N. Lynch. A lower bound for the time to assure interactiveconsistency. Information Processing Letters, 14(4):182{186, 1982. They provethat no deterministic solution to the Byzantine Generals problem can reachagreement in less than t+1 rounds, where t is the number of faulty processes.[Fla85] P. Flajolet. Approximate counting: A detailed analysis. BIT, 25:113{134,1985. In 1978, R. Morris published an article in Communications of the ACMentitled \Counting large numbers of events in small registers." This paper pre-sented a randomized algorithm, known as Approximate Counting, that allowsone to approximately maintain a counter whose values may range in the inter-val 1 toM using only about log logM bits, rather than the logM bits requiredby a standard binary counter. The algorithm has proven useful in the areasof statistics and data compression. Flajolet provides a complete analysis ofapproximate counting which shows (among other things) that, using suitablecorrections, one can count up to M keeping only log logM + � bits with anaccuracy of order O(2��=2). 113
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[Fla90] P. Flajolet. On adaptive sampling. Computing, 34:391{400, 1990. AdaptiveSampling is a probabilistic technique due to Wegman that allows one to es-timate the cardinality (number of distinct elements) of a large �le typicallystored on disk. This problem naturally arises in query optimization of databasesystems. Flajolet shows that using m words of in-core memory, adaptive sam-pling achieves an expected relative accuracy close to 1:20=pm. This compareswell with the probabilistic counting technique of Flajolet and Martin [FM85b]:adaptive sampling appears to be about 50% less accurate than probabilisticcounting for comparable values of m. Adaptive sampling, however, is com-pletely free of non-linearities for smaller values of cardinalities (probabilisticcounting is only asymptotically unbiased).[FLP85] M. J. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consen-sus with one faulty process. Journal of the ACM, 32(2), April 1985. This paperproves that every completely asynchronous, deterministic algorithm for Byzan-tine agreement has the possibility of nontermination, even with only one faultyprocessor. This impossibility result does not hold in the synchronous case. Forcompletely asynchronous probabilistic algorithms, the problem is avoided sincetermination is only required with probability 1. See Section 3.5 for an exampleof such a probabilistic algorithm for asynchronous Byzantine agreement.[FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive, zero-knowledgeproofs based on a single random string. In Proc. 31st Ann. IEEE Symp. onFoundations of Computer Science, pages 308{317, 1990. The following twoproblems posed in [DSMP88], associated with non-interactive zero-knowledgeproof systems, are solved: (1) how to construct NIZK proofs under generalcomplexity assumptions rather than number-theoretic assumptions, and (2)how to enable multiple provers to prove, in writing, polynomially many theo-rems based on a single random string. The authors show that any number ofprovers can share the same random string and that any trap-door permutationcan be used instead of quadratic residuosity. Also, if the prover is allowed tohave exponential computing power, then one-way permutations are su�cientfor bounded non-interactive zero-knowledge proofs.[FLW92] A. M. Ferrenberg, D. F. Landau, and Y. J. Wong. Monte Carlo simulations:Hidden errors from \good" random number generators. Physical Review Let-ters, 69(23):3382{3388, December 1992. The authors unveil subtle correlations114
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in �ve widely used pseudo-random number generators. They undertook thisinvestigation when a simple mathematical model of the behavior of atoms ina magnetic crystal failed to give the expected results. They traced the errorto the pseudo-random number generator used in the simulation.[FM85a] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data baseapplications. Journal of Computer and System Sciences, 25(31):182{209, 1985.This paper presents a probabilistic counting technique for determining thenumber of distinct records in a �le. The technique requires O(1) storage and asingle pass over the �le. Also appeared as \Probabilistic counting," Proc. 24thAnn. IEEE Symp. on Foundations of Computer Science, 1983, pp. 76{84.[FM85b] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data baseapplications. Journal of Computer and System Sciences, 31:182{209, 1985.Probabilistic Counting is a technique for estimating the cardinality (numberof distinct elements) of a large �le typically stored on disk. This problemnaturally arises in query optimization of database systems. Using m words ofin-core memory, probabilistic counting achieves an expected relative accuracyclose to 0:78=pm. Moreover, it performs only a constant number of operationsper element of the �le.[FM88] P. Feldman and S. Micali. Optimal algorithms for Byzantine agreement. InProc. 20th Ann. ACM Symp. on Theory of Computing, pages 162{172, 1988.The expected running time of this algorithm is constant in a synchronous net-work of n nodes if the number of faults is less than n=3, and in an asynchronousnetwork of n nodes if the number of faults is less than n=4.[For87] L. Fortnow. The complexity of perfect zero-knowledge. In Proc. 19th Ann.ACM Symp. on Theory of Computing, pages 204{209, May 1987. The notionof perfect zero-knowledge requires that the veri�er, no matter how powerful itis, not learn any additional information. Fortnow proves that for any languagewhich has a perfect zero-knowledge protocol, its complement has a single roundinteractive protocol. This result implies that for NP-complete languages, thereare no perfect zero-knowledge protocols (unless the polynomial time hierarchycollapses).[FR80] N. Francez and M. Rodeh. A distributed abstract data type implementedby a probabilistic communication scheme. In Proc. 21st Ann. IEEE Symp.115
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on Foundations of Computer Science, pages 373{379, 1980. They also give adeadlock-free, truly distributed and symmetric solution to the dining philoso-phers problem based on a probabilistic implementation of CSP. In particular,they present a randomized algorithm for the scheduling of input/output guardsin CSP, which we discuss in Section 3.2. This was one of the �rst papers onprobabilistic distributed algorithms. A revised version appears as TR 80, IBMScienti�c Center, Haifa, Israel, April 1980 (same title).[FS89] L. Fortnow and M. Sipser. Probabilistic computation in linear time. In Proc.21st Ann. ACM Symp. on Theory of Computing, pages 148{156, 1989. An or-acle is speci�ed, under which all problems solvable in random polynomial timeare solvable in random linear time, thus collapsing a number of randomizedcomplexity classes into one. Analogous results in deterministic computationsare demonstratably false.[FS92] U. Feige and A. Shamir. Multiple oracle interactive proofs with constantspace veri�ers. Journal of Computer and System Sciences, 44:259{271, 1992.The authors show that the expected payo� of reasonable games of incompleteinformation are undecidable. The Turing-machine simulation uses polynomialcost and stops with probability 1.[Fur87] M. Furer. The power of randomness for computational complexity. In Proc.19th Ann. ACM Symp. on Theory of Computing, pages 178{181, 1987. Thispaper improves on the VLSI algorithm by Mehlhorn and Schmidt [MS82]. AnO(n) average bit complexity algorithm with no probability of error is demon-strated.[Gaz91] H. Gazit. An optimal randomized parallel algorithm for �nding the connectedcomponents of a graph. SIAM Journal on Computing, 20(6):1046{1067, 1991.The expected running time of this algorithm is O(log n) with O((m+n)= log n)processors, where n is the number of vertices and m is the number of edges. Ituses O(m+ n) space. The algorithm is optimal in the time-processor productsense, as well as in space complexity.[GBY91] G.H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Struc-tures. Addison-Wesley, Reading, Mass., 1991. Section 3.3.16 gives an overviewof perfect hashing. 116
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[GGK92] M. Ger�eb-Graus and D. Krizanc. The average complexity of parallel com-parison merging. SIAM Journal on Computing, 21:43{47, 1992. The authorsestablish a lower bound on the time complexity of randomized merging of twosorted lists in a parallel computation tree model. An earlier version of thispaper, entitled \The Complexity of Parallel Comparison Merging," appearedin Proc. 28th Symp. on Foundations of Computer Science, 1987.[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-tions. Journal of the ACM, 33:792{807, 1986. A computational complexitymeasure of the randomness of functions is introduced, and, assuming the exis-tence of one-way functions, a pseudo-random function generator is presented.[GHY89] Z. Galil, S. Haber, and M. Yung. Minimum-knowledge interactive proofs fordecision problems. SIAM Journal on Computing, 18(4):711{739, Aug 1989.This paper extends the work of [GMR89], the concept of minimum knowledgeis de�ned and a minimum-knowledge protocol for transferring the results ofany �xed computation from one party to another (e.g. prover to veri�er) isdescribed.[Gil77] J. T. Gill. Computational complexity of probabilistic Turing machines. SIAMJournal on Computing, 6(4):675{695, December 1977. This paper de�nes thebasic notion of a probabilistic Turing machine (PTM). A PTM computes apartial function that assigns to each input the output which occurs with aprobability greater than half. It is shown that a NDTM can be simulated by aPTM in the same space but with a small error probability. Gill also considersthe complexity classes RP , PP , and BPP for polynomial-time probabilisticTuring machines (see Section 4.1). He shows that P � RP � BPP � PP �PSPACE and that RP � NP � PP .[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide tothe Theory of NP-completeness. W.H. Freeman and Company, 1979. Thiswell-known book on the theory of NP -completeness contains a section on theprobabilistic analysis of approximation algorithms for NP -complete combina-torial optimization problems.[GK86] S. Goldwasser and J. Kilian. Almost all primes can be quickly certi�ed. InProc. 18th Ann. ACM Symp. on Theory of Computing, pages 316{329, 1986.The authors show that if Cram�er's conjecture about the spacing of prime117
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numbers is true than there exists a random polynomial time algorithm forprimality testing.[GKS92] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construc-tion of Delaunay and Voronoi diagrams. Algorithmica, 7(4):381{413, 1992.They give a new randomized incremental algorithm for the construction ofplanar Voronoi diagrams and Delaunay triangulations. Their algorithm takesexpected time O(n= log n) and space O(n), is very practical to implement,and along with the algorithm of [BT93], is more \on-line" than earlier similarmethods.[GKS93] W. Goddard, V. King, and L. Schulman. Optimal randomized algorithms forlocal sorting and set-maxima. SIAM Journal on Computing, 22(2):272{283,April 1993. Nearly optimal randomized algorithms are presented for the localsorting problem (i.e., determining the relative order in every pair of adjacentvertices in a graph in which each vertex is assigned an element of a total order)and the set-maxima problem (i.e., determining the maximum element of eachset in a collection of sets whose elements are drawn from a total order).[GL89] R. I. Greenberg and C. E. Leiserson. Randomized routing on fat-trees. InS. Micali, editor, Advances in Computing Research 5: Randomness and Com-putation, pages 345{374. JAI Press, Greenwich, CT, 1989. Fat-Trees are aclass of routing networks in parallel computation. Given a set of messages tosend, the choice is made at random of which message is to be sent at whattime. This approach is di�erent from that of [Val82]. See also Proc. 17th Ann.ACM Symp. on Theory of Computing, 1985, pp. 241{249.[GM84] S. Goldwasser and S. Macali. Probabilistic encryption. Journal of Computerand System Sciences, 28(2):270{299, 1984. This paper introduces a new proba-bilistic encryption technique. It also contains an excellent introduction to otherpublic key cryptosystems with discussion on objections to cryptosystems basedon trapdoor functions.[GMR88] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secureagainst adaptive chosen-message attack. SIAM Journal on Computing, 17:281{308, 1988. This is a companion paper of [KPU88].118
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[GMR89] S. Goldwasser, S. Macali, and C. Racko�. The knowledge complexity of inter-active proof systems. SIAM Journal on Computing, pages 186{208, 1989. Thispaper �rst appeared in Proc. 17th Ann. ACM Symp. on Theory of Comput-ing, 1985, pp. 291{304. It introduces the important notion of zero-knowledgeinteractive proofs. The authors show that it is possible to prove that certaintheorems are true without divulging why this is so.[GMV91] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant-time parallel algorithms. In Proc. 32nd Ann. IEEE Symp. on Foundations ofComputer Science, pages 698{710, 1991. This paper presents a paradigm forobtaining O(log� n) running time for problems such as directory maintenance,load balancing and hashing using n= log� n processors.[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental gameor a completeness theorem for protocols with honest majority. In Proc. 19thAnn. ACM Symp. on Theory of Computing, pages 218{229, 1987. Goldreich etal. demonstrate the use of zero-knowledge proofs on proving the completenesstheorem for protocols with honest majority.[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but theirvalidity or all languages in NP have zero-knowledge proof systems. Journal ofthe ACM, 38(1):691{729, 1991. They show that for a language L in NP anda string w in L, there exists a probabilistic interactive proof that e�cientlydemonstrates membership of x in L without conveying additional information.Previously, zero-knowledge proofs were known only for some problems thatwere in both NP and co-NP . A preliminary version of this paper appearedin Proc. 27th Ann. IEEE Symp. on Foundations of Computer Science, 1986,under the title \Proofs that yield nothing but their validity and a methodologyof cryptographic protocol design.".[Gol92] M. Goldwurm. Probabilistic estimation of the number of pre�xes of a trace.Theoretical Computer Science, 92:249{268, 1992. The author uses the resultto determine the behavior of several algorithms relating to trace languages.[Gon84] G.H. Gonnet. Determining the equivalence of expressions in random polyno-mial time. In Proc. 16th Ann. ACM Symp. on Theory of Computing, pages334{341, 1984. Hashing functions are used to determine algebraic expressionequivalence with a small probability of error. The probability of error can be119
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made arbitrarily small, depending on the number of iterations of the algorithm.See [Gon86] for some related work.[Gon86] G.H. Gonnet. New results for random determination of equivalence of expres-sions. In B.W. Char, editor, ISSAC '86: Proc. Int'l. Symp. on Symbolic andAlgebraic Computation, pages 127{131. ACM Press, 1986. Some open prob-lems in the same general area as that covered by [Gon84] are solved in thispaper.[GRSS93] M. Golin, R. Raman, C. Schwarz, and M. Smid. Randomized data struc-tures for the dynamic closest-pair problem. In Proc. Fourth Ann. ACM-SIAMSymp. on Discrete Algorithms, pages 301{310, Austin, TX, January 1993. Theauthors describe a new randomized data structure, the sparse partition, forsolving the dynamic closest-pair problem. Using this data structure, the clos-est pair of a set of n points in k-dimensional space, for any �xed k, can befound in constant time. If the points are chosen from a �nite universe, and ifthe oor function is available at unit-cost, then the data structure supports in-sertions into and deletions from the set in expected O(log n) time and requiresexpected O(n) space. Here, it is assumed that the updates are chosen by anadversary who does not know the random choices made by the data structure.[GS89] S. Goldwasser and M. Sipser. Private coins versus public coins in interac-tive proof systems. Advances in Computing Research 5: Randomness andComputation, 1989. This work establishes equivalence between the notionsof interactive proofs introduced in [GMR89] and [BM88]. (A preliminary ver-sion appeared in Proc. 18th Ann. ACM Symp. on Theory of Computing, 1986,pp. 59{68).[Gup93] R. Gupta. �-test: Perfect hashed index test for response validation. In Proc.1993 IEEE Int'l. Conf. on Computer Design, Cambridge, MA, Oct 1993. Ascheme for checking the �delity of test responses generated by a speciallytailored sequence of test inputs is described. Randomized search is used tocompute a special perfect hashing function h(x) that map the expected testoutcomes to the sequence [1 . . .m]. This sequence is checked by a hardwareimplementation of h(x) and an up-counter.[GW86] A. G. Greenberg and A. Weiss. A lower bound for probabilistic algorithmsfor �nite state machines. Journal of Computer and System Sciences, 33(1):88,120
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August 1986. A proof that the running time cannot be better than 
(2n2 n) ispresented.[GY89] R. Graham and A. Yao. On the improbability of reaching Byzantine consensus.In Proc. 21st Ann. ACM Symp. on Theory of Computing, pages 467{478, 1989.The maximum probability �n;t of obtaining consensus is attacked for t � n=3(For smaller values, deterministic algorithms are available, so �n;t = 1.) Thesmallest non-trivial case, �3;1, is shown to be (q(5) � 1)=2, the reciprocal ofthe golden ratio. In a restricted model, it is shown that for all �, 0 < � < 1, ift=n > 1 � 1�log1��1=2log (1�(1��)1=2) , then �n;t < �.[Had86] V. Hadzilacos. Ben-Or's randomized protocol for consensus in asynchronoussystems. Course notes: Computer Science 2221F, Department of ComputerScience, University of Toronto, October 1986. An elegant proof of the cor-rectness of Ben-Or's [BO83] probabilistic algorithm for Byzantine agreementis presented.[Hag91] T. Hagerup. Constant-time parallel integer sorting. In Proc. 23rd Ann. ACMSymp. on Theory of Computing, pages 299{306, New Orleans, LA, May 1991.Standard sorting algorithms return the elements of an array in nondecreasingorder. In the chain sorting problem, the elements of a linked list are returnedin nondecreasing order. This problem can be viewed as more primitive thanthe standard sorting problem as it does not involve list ranking computation,which is implicit in the standard problem. Hagerup presents several e�cientrandomized parallel algorithms for the chain sorting problem, some of whichrequire only constant expected time.[Har87] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 1987. Thisbook contains a well-written chapter on probabilistic algorithms and theircomplexity theory.[Has90] J. Hastad. Pseudo-random generators under uniform assumptions. In Proc.22nd Ann. ACM Symp. on Theory of Computing, pages 395{404, Baltimore,MD, May 1990. Hastad proves that given a function f that is one-way inthe uniform model (i.e., cannot be inverted except on a vanishing fraction ofthe inputs by a probabilistic polynomial time Turing machine), it is possi-ble to construct a pseudo random bit-generator that passes all probabilisticpolynomial time statistical tests.121
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[Her92] T. Herman. Self-stabilization: randomness to reduce space. Distributed Com-puting, 6(2):95{98, 1992. Herman uses randomization to convert Dijkstra'sk-state mutual exclusion protocol for unidirectional rings to a 3-state proto-col.[HM87] A. Hajnal and W. Maass. Threshold circuits of bounded depth. In Proc.28th Ann. IEEE Symp. on Foundations of Computer Science, pages 99{109,1987. Polynomial size threshold circuits of bounded depth are viewed as mech-anisms for parallel computations, where elements of the circuit are thresholdgates (output high if the weighted sum of inputs exceeds a set threshold).Probabilistic, deterministic, imprecise and unreliable threshold circuits areconsidered.[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring concept. Com-munications of the ACM, 17(2):549{557, October 1974. Erratum in Commu-nications of the ACM, Vol. 18, No. 2, 1975. This paper contains one of the�rst solutions to the Dining Philosophers problem. A probabilistic algorithmfor this problem is the subject of Section 3.1.[Hoa78] C. A. R. Hoare. Communicating Sequential Processes. Communications ofthe ACM, 21:666{677, August 1978. Hoare's novel language CSP combinednondeterminism and synchronized message passing. Since its inception, variousschemes have been proposed to add output guards to the language. In Section3.2, we discuss a probabilistic algorithm for output guards.[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall Interna-tional, U.K., 1985. Hoare's book contains an elegant message-passing solutionto the Dining Philosophers problem. A probabilistic algorithm for this problemis the subject of Section 3.1.[Hop81] J. E. Hopcroft. Recent directions in algorithmic research. In P. Deussen, editor,Proc. Fifth Conf. on Theoretical Computer Science, pages 123{134. Springer-Verlag, 1981. This work is an early survey of probabilistic algorithms.[HS85] S. Hart and M. Sharir. Concurrent probabilistic programs, or: How to sched-ule if you must. SIAM Journal on Computing, 14(4):991{1012, November1985. The authors analyze the worst-case probability of termination of a set122
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of concurrently running processes. Each process may use randomization, andfair interleaving is assumed.[HT82] J. H. Halton and R. Terada. A fast algorithm for the Euclidean TravelingSalesman problem, optimal with probability one. SIAM Journal on Com-puting, 11(1), Feb. 1982. Halton and Terada present an algorithm for theTravelling Salesman Problem over n points, which, for appropriate choice ofa function � takes less than n�(n) time and asymptotically converges to theminimum length tour, with probability one, as n!1.[ILL89] R. Impagliazzo, L. Levin, and M. Luby. Pseudorandom generation from one-way functions. In Proc. 21st Ann. ACM Symp. on Theory of Computing, pages12{24, 1989. The existence of one-way functions is shown to be necessary andsu�cient for the existence of pseudorandom generators. A one-way functionF (x) is one that is easily computed, but given F (x), it should not be possibleto easily recover x, either with a small circuit or with a fast algorithm. Algo-rithms for pseudorandom generators are provided that use one-way functionswhose inverses are di�cult to obtain using small circuits or fast algorithms.See also [Has90].[IM83] O. H. Ibarra and S. Moran. Probabilistic algorithms for deciding the equiva-lence of straight-line programs. Journal of the ACM, 30(1):217{228, January1983. They study the complexity of deciding the equivalence of straight-lineprograms, i.e., those in which there are no loops, and only statements of theform x := y, x := y + z, x := y - z, and x := y * z are permitted. Given twosuch programs P and Q, Ibarra and Moran ask the question: Is P = Q? Ifthe domain of the variables is an in�nite �eld such as the integers, then theyshow that there exists a polynomial-time probabilistic algorithm to solve thisproblem. If the domain is a �nite �eld, the problem is shown to be NP-hard.[IR81] A. Itai and M. Rodeh. The lord of the ring or probabilistic methods for break-ing symmetry in distributed networks. Technical Report RJ 3110, IBM, SanJose, 1981. Itai and Rodeh consider the problems of choosing a leader anddetermining the size of a ring of indistinguishable processors. If the size of thering is known, e�cient probabilistic algorithms exit for choosing a leader. How-ever, there exists no probabilistic solution to the problem of determining the123
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size of a ring that can guarantee both termination and a non-zero probabilityof correctness.[IRM81] O. H. Ibarra, L. Rosier, and S. Moran. Probabilistic algorithms and straight-line programs for some rank decision problems. In Information ProcessingLetters, volume 12, pages 227{232, 1981. Given a positive integer r and amatrix A with polynomial entries (where the polynomials are represented byarbitrarily parenthesized arithmetic expressions using +, -, *, and exponen-tiation to a positive constant), the problem of deciding whether A has rankr is reduced in polynomial time to the zero-equivalence problem (i.e., theproblem of determining whether a program always outputs 0) of straight-lineprograms [MT85].[IZ89] E. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proc. 30thAnn. IEEE Symp. on Foundations of Computer Science, pages 248{253, 1989.This paper proves that two very simple pseudo-random number generators,which are minor modi�cations of linear congruential generator and the simpleshift register generator, are good for amplifying the correctness of probabilisticalgorithms.[Jae81] G. Jaeschke. Reciprocal hashing: A method for generating minimal perfecthashing functions. Communications of the ACM, 24(12):829{823, Dec 1981.Hash functions, for a key x in a set S of positive integers, of the form h(x) =(C=(Dx+E)) mod N are considered. Though the existence of h is guaranteed,the scheme su�ers from many practical problems because of exhaustive natureof the search for h.[JKS84] J. Ja'Ja', V. K. Prasanna Kumar, and J. Simon. Information transfer un-der di�erent sets of protocols. SIAM Journal on Computing, 13(4):840{849,November 1984. This paper is a study of the communication complexity ofinformation transfer in deterministic, random, non-deterministic and proba-bilistic computation models. It is widely conjectured that P � R � NP � PPfor polynomial time complexity classes. The authors prove that exponentialgaps exist among the corresponding communication complexity classes.[Joh90] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, Volume A: Algorithms and Com-plexity, chapter 9, pages 67{161. Elsevier and The MIT Press (co-publishers),124
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1990. Johnson presents an extensive survey of computational complexityclasses. Of particular interest here is his discussion of randomized, probabilis-tic, and stochastic complexity classes.[JS89] M. R. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journalon Computing, 18(6):1149{1178, 1989. Broder [Bro86] related the task ofapproximating the permanent of a matrix to that of uniformly generatingperfect matchings in a graph. This paper gives a randomized approximationscheme for the latter problem by simulating it as a Markov chain whose statesare matchings in the graph. For this scheme to be e�cient the Markov chainmust be rapidly mixing, i.e. converge to its stationary distribution in a shorttime.[JVV86] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combi-natorial structures from a uniform distribution. Theoretical Computer Science,43:169{188, 1986. This paper considers the class of problems involving the ran-dom generation of combinatorial structures from a uniform distribution. It isshown that exactly uniform generation of `e�ciently veri�able' combinatorialstructures is reducible to approximate counting.[Kal92] G. Kalai. A subexponential randomized simplex algorithm. In Proc. 24th Ann.ACM Symp. on Theory of Computing, pages 475{482, Victoria, B.C., Canada,May 1992. A randomized variant of the simplex algorithm is presented that,given a linear program with d variables and n constraints, uses an expectedsubexponential number of arithmetic operations.[Kam89] M. Kaminski. A note on probabilistically verifying integer and polynomialproducts. Journal of the ACM, 36(1):845{876, 1989. The author describesprobabilistic algorithms for verifying the product of two n-bit integers in O(n)bit operations, and for verifying the product of two polynomials of degree nover integral domains in 4n+ o(n) algebraic operations. The error probabilityis is o( 1n1�� ) for any � > 0.[Kar86] R. M. Karp. Combinatorics, complexity and randomness. Communicationsof the ACM, 29(2):98{109, February 1986. This is the 1985 Turing AwardLecture. It traces the development of combinatorial optimization and com-putational complexity theory. It discusses probabilistic algorithms and prob-125
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abilistic analysis of approximation algorithms for NP-complete optimizationproblems.[Kar90] R. M. Karp. An introduction to randomized algorithms. Technical ReportTR-90-024, Computer Science Division, University of California, Berkeley, CA94704, 1990. A recent, comprehensive survey of randomized algorithms.[Kar91] R. M. Karp. Probabilistic recurrence relations. In Proc. 23rd Ann. ACMSymp. on Theory of Computing, pages 190{197, New Orleans, LA, May 1991.In order to solve a problem instance of size x, a divide-and-conquer algorithminvests an amount of work a(x) to break the problem into subproblems of sizesh1(x); h2(x); � � � ; hk(x), and then proceeds to solve the subproblems. When thehi are random variables | because of randomization within the algorithm orbecause the instances to be solved are assumed to be drawn from a probabilitydistribution | the running time of the algorithm on instances of size x is also arandom variable T (x). Karp gives several easy-to-apply methods for obtainingfairly tight bounds on the upper tails of the probability distribution of T (x),and presents a number of typical applications of these bounds to the analysisof algorithms. The proofs of the bounds are based on an interesting analysisof optimal strategies in certain gambling games.[Kar93] D. R. Karger. Global min-cuts in RNC, and other rami�cations of a sim-ple min-cut algorithm. In Proc. Fourth Ann. ACM-SIAM Symp. on DiscreteAlgorithms, pages 21{30, Austin, TX, January 1993. Given a graph with nvertices and m (possibly weighted) edges, the min-cut problem is to partitionthe vertices into two non-empty sets S and T so as to minimize the number ofedges crossing from S to T (if the graph is weighted, the problem is to mini-mize the total weight of crossing edges). Karger gives an RNC algorithm forthe min-cut problem which runs in time O(log2 n) on a CRCW PRAM withmn2 log n processors.[Kel92] P. Kelsen. On the parallel complexity of computing a maximal independentset in a hypergraph. In Proc. 24th Ann. ACM Symp. on Theory of Computing,pages 339{350, Victoria, B.C., Canada, May 1992. A maximal independentset in a hypergraph is a subset of vertices that is maximal with respect to theproperty of not containing any edge of the hypergraph. Kelsen derandomizes126
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the randomized algorithm of Beame and Luby to obtain the �rst sublineartime deterministic algorithm for hypergraphs with edges of size O(1).[KGY89] M. Kharitonov, A. V. Goldberg, and M. Yung. Lower bounds for pseudoran-dom number generators. In Proc. 30th Ann. IEEE Symp. on Foundations ofComputer Science, pages 242{247, Research Triangle Park, NC, October 1989.IEEE Computer Society Press. A pseudorandom generator is a deterministicalgorithm that expands a truly random seed into a longer pseudorandom string.Such generators play an important role in applications like cryptography. Theauthors provide lower bounds on the computational resources needed for thegeneration of pseudorandom strings.[Kil88] J. Kilian. Zero-knowledge with log-space veri�ers. In Proc. 29th Ann. IEEESymp. on Foundations of Computer Science, pages 25{34, 1988. Interactiveproof systems where the veri�ers are assumed to be log-space probabilisticautomata are considered. The class of languages that are amenable to zero-knowledge proofs with such veri�ers is described.[Kil90] J. Kilian. Uses of Randomness in Algorithms and Protocols. MIT Press, 1990.Kilian's Ph.D. dissertation, which was selected as an ACM Distinguished Dis-sertation for the year 1989, is in three parts. The �rst part describes a ran-domized algorithm to generate large prime numbers which have short, easilyveri�ed certi�cates of primality. The algorithm provides short, deterministi-cally veri�able proofs of primality for all but a vanishing fraction of primenumbers. The second part considers the secure circuit evaluation problem inwhich two parties wish to securely compute some function on their privateinformation. Kilian reduces this problem to an oblivious transfer protocol . Thethird part of the dissertation generalizes probabilistic interactive proof sys-tems to multiple provers. He shows that any language that has a multi-proverinteractive proof system has a zero-knowledge multi-prover interactive proofsystem.[Kil92] J. Kilian. A note on e�cient zero-knowledge proofs and arguments. In Proc.24th Ann. ACM Symp. on Theory of Computing, pages 723{732, Victoria,B.C., Canada, May 1992. The standard de�nition of an interactive proofrequires that the veri�er accept a correct proof and reject an incorrect assertionwith probability at least 23 . This paper shows how to e�ciently reduce the127
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error probability to less than 2�k, where k is some easily adjustable securityparameter.[KL85] R. M. Karp and M. Luby. Monte-Carlo algorithms for planar multiterminalreliability problems. Journal of Complexity, 1:45{64, 1985. They present ageneral Monte-Carlo technique for obtaining approximate solutions of severalenumeration and reliability problems including counting the number of satis-fying assignments of a propositional formula given in disjunctive normal form(a #P-complete problem) and estimating the failure probability of a system.An earlier version appeared in Proc. 24th Ann. IEEE Symp. on Foundationsof Computer Science, 1983, pp. 56{64. See also [KLM89].[KL93] R. Klein and A. Lingas. A linear-time randomized algorithm for the boundedVoronoi diagram of a simple polygon. In Proc. Ninth Ann. ACM Symp. onComputational Geometry, pages 124{132, San Diego, CA, May 1993. For apolygon P , the bounded Voronoi diagram of P is a partition of P into regionsassigned to the vertices of P . Klein and Lingas present a randomized algo-rithm that builds the bounded Voronoi diagram of a simple polygon in linearexpected time.[KLM89] R. M. Karp, M. Luby, and N. Madras. Monte-Carlo approximation algorithmsfor enumeration problems. Journal of Algorithms, 10:429{448, 1989. A com-panion paper of [KL85]; an earlier version appeared in Proc. 24th Ann. IEEESymp. on Foundations of Computer Science, 1983, pp. 56{64.[KLMadH92] R. M. Karp, M. Luby, and F. Meyer auf der Heide. E�cient PRAM simulationon a distributed memory machine. In Proc. 24th Ann. ACM Symp. on Theoryof Computing, pages 318{326, Victoria, B.C., Canada, May 1992. They presenta randomized simulation of an n log log(n) log�(n)-processor shared memorymachine (PRAM) on an n-processor distributed memory machine (DMM) withoptimal expected delay O(log log(n) log�(n)) per step of simulation.[KM93] D. Koller and N. Megiddo. Constructing small sample spaces satisfying givenconstraints. In Proc. 25th Ann. ACM Symp. on Theory of Computing, pages268{277, San Diego, CA, May 1993. The authors prove NP -completenessfor the problem of �nding small sample spaces for joint distributions of ndiscrete random variables satisfying a given set of constraints of the formPr(Event) = �. For the case where the constraints have a certain form and128
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are consistent with a joint distribution of independent random variables, asmall sample space can be constructed in polynomial time; a result that canbe used to derandomize algorithms.[KMO89] J. Kilian, S. Micali, and R. Ostrovsky. Minimum resource zero-knowledgeproof. In Proc. 30th Ann. IEEE Symp. on Foundations of Computer Science,pages 474{479, Oct 1989. The various resources such as number of envelopes,number of oblivious transfers, and total amount of communication requiredby zero-knowledge protocols are considered. The paper presents a techniqueof executing k rounds of a protocol, which guarantees that any polynomialnumber of NP-theorems can be proved non-interactively in zero-knowledge,with the probability of accepting a false theorem below 1=2k . The main resultin this paper assumes the existence of trap-door permutations in order toimplement Oblivious Transfer Protocol.[KMP77] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.SIAM Journal on Computing, 6:323{350, 1977. This paper presents a fastdeterministic algorithm for the problem of determining if a given pattern ofm symbols occurs in a text of length n. Their well-known algorithm runs intime O(n +m), making judicious use of a pre�x function, which for a givenpattern encapsulates knowledge about how the pattern matches against shiftsof itself.[KMRZ93] E. Kushilevitz, Y. Mansour, M. O. Rabin, and D. Zuckerman. Lower boundsfor randomized mutual exclusion (extended abstract). In Proc. 25th Ann.ACM Symp. on Theory of Computing, pages 154{163, San Diego, CA, May1993. The authors establish a lower bound of 
(log log n) bits on the sizeof the shared variable required by randomized mutual exclusion algorithmsensuring strong fairness. Slightly weakening the fairness condition results inan exponential reduction in the size of the required shared variable.[Knu73] D. E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Search-ing. Addison-Wesley, 1973. This volume is a repository of sorting and searchingalgorithms and their analysis. It contains a detailed and thorough treatmentof hashing.[Ko82] K. Ko. Some observations on probabilistic algorithms and NP-Hard prob-lems. Information Processing Letters, 14(1):39{43, March 1982. Ko shows129
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that if there is a probabilistic algorithm for an NP-hard problem with a small\two-sided error", then there is a probabilistic algorithm for any NP-completeproblem with a small \one-sided error".[Koz81] D. Kozen. Semantics of probabilistic programs. Journal of Computer and Sys-tem Sciences, 22(3):328{350, 1981. A novel attempt at de�ning the semanticsof probabilistic programs. Two equivalent semantics are presented.[Koz85] D. Kozen. A probabilistic PDL. Journal of Computer and System Sciences,30(2):162{178, 1985. Kozen de�nes a formalism for reasoning about probabilis-tic programs at the propositional level. Probabilistic Propositional DynamicLogic (PPDL), which has an arithmetic extension for each logical construct inPDL, is presented along with some decision procedure formulas and a deduc-tive calculus.[KPRR92] Z. M. Kedem, K. V. Palem, M. O. Rabin, and A. Raghunathan. E�cientprogram transformations for resilient parallel computation via randomization.In Proc. 24th Ann. ACM Symp. on Theory of Computing, pages 306{317,Victoria, B.C., Canada, May 1992. The authors show how randomization canbe used to automatically transform an arbitrary program written for an idealparallel machine to run on a completely asynchronous machine, such that theresulting program is work and space e�cient relative to the ideal program fromwhich it was derived.[KPS85] R. M. Karp, N. Pippenger, and M. Sipser. A time randomness tradeo�. In AMSConf. on Probabilistic Computational Complexity, Durham, New Hampshire,1985. This paper gives the �rst example of deterministic ampli�cation usingexpander graphs.[KPU88] D. Krizanc, D. Peleg, and E. Upfal. A time-randomness tradeo�s for obliv-ious message routing. In Proc. 20th Ann. ACM Symp. on Theory of Com-puting, pages 93{102, 1988. Given the probability Q that an algorithm failsto complete its task in T steps, a lower bound on the entropy of the randomsource used in the algorithm is obtained. Near-optimal algorithms for obliviouspacket-routing in a bounded-degree network are included (see also [PU90]).[KR87] R. M. Karp and M. O. Rabin. E�cient randomized pattern-matching algo-rithms. IBM Journal of Research and Development, 31(2):249{260, March130
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1987. An elegant randomized algorithm for the string matching problem ispresented. Mismatches reported by the algorithm are always correct, while aclaimed match may be erroneous with small probability. The algorithm uses a�ngerprinting function (on the �nite �eld of modp residues, where p is chosenat random) to e�ciently check for occurrences of the pattern string in the textstring. The running time of the algorithm is O((n�m+1)m) in the worst case,where the text is of length n and the pattern is of length m, but can be ex-pected to run in time O(n+m) in practice. The probability that the algorithmreports a false match is 1=n. Two-dimensional patterns are also considered.An earlier version of this paper appeared as Technical Report TR-31-81, AikenComputation Lab, Harvard University, 1981.[KR88] H. Karlo� and P. Raghavan. Randomized algorithms and pseudorandom num-bers. In Proc. 20th Ann. ACM Symp. on Theory of Computing, pages 310{321,1988. Following up on Bach's work [Bac91], this paper studies pseudo-randomsubstitutes (with small seeds) for purely random choices in sorting, selectionand oblivious message routing. An interesting result is that the linear con-gruence pseudo-random number generator proposed by Knuth [Knu73] caninteract with some quicksort algorithms.[Kro85] L. Kronsjo. Computational Complexity of Sequential and Parallel Algorithms.John Wiley and Sons, New York, 1985. Chapter 5, Section 5.3, addresses prob-abilistic algorithms. Rabin's algorithms for primality and the Nearest Neigh-bors problem are described.[KRR91] H. Karlo�, Y. Rabani, and Y. Ravid. Lower bounds for randomized k-serverand motion planning. In Proc. 23rd Ann. ACM Symp. on Theory of Comput-ing, pages 278{288, New Orleans, LA, May 1991. Lower bounds are provedon the competitive ratio of randomized algorithms for the on-line k-serverproblem and an on-line motion-planning problem.[KRT93] M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment:An optimal randomized algorithm for the cow-path problem. In Proc. FourthAnn. ACM-SIAM Symp. on Discrete Algorithms, pages 441{447, Austin, TX,January 1993. The �rst randomized algorithm for the w-lane cow-path prob-lem, a problem of searching in an unknown environment, is given. The algo-131
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rithm is optimal for w = 2 and evidence is supplied that it is optimal for largervalues of w.[KS92] P. N. Klein and S. Sairam. A parallel randomized approximation scheme forshortest paths. In Proc. 24th Ann. ACM Symp. on Theory of Computing,pages 750{758, Victoria, B.C., Canada, May 1992. A randomized algorithmis given for approximate shortest path computation in an undirected weightedgraph.[KS93] D. R. Karger and C. Stein. An ~O(n2) algorithm for minimum cuts. In Proc.25th Ann. ACM Symp. on Theory of Computing, pages 757{765, San Diego,CA, May 1993. A minimum cut is a set of edges of minimum weight whoseremoval disconnects a given graph. Karger and Stein give a strongly polynomialrandomized algorithm which �nds a minimum cut with high probability inO(n2 log3 n) time. Their algorithm can be implemented in RNC using onlyn2 processors, and is thus the �rst e�cient RNC algorithm for the min-cutproblem.[KST90] P. Klein, C. Stein, and E. Tardos. Leighton-Rao might be practical: Faster ap-proximation algorithms for concurrent ow with uniform capacities. In Proc.22nd Ann. ACM Symp. on Theory of Computing, pages 310{321, Baltimore,MD, May 1990. They give an O(m2 logm) expected-time randomized algo-rithm for approximately solving the concurrent multicommodity ow problemwith uniform capacities.[Kur87] S. A. Kurtz. A note on random polynomial time. SIAM Journal on Computing,16(5):852{853, October 1987. Shows that PA\PB = BPP with probability 1for independent random sets A and B. Here, A and B are sets consistingof strings chosen at random, and PA and PB are relativized to A and Brespectively. See [Gil77] for additional notation.[KUW86] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching inRandom NC. Combinatorica, 6:35{48, 1986. Perfect matching is a fundamentalproblem that is not known to be solvable by an NC algorithm, i.e., a parallelalgorithm running in time polynomial in log n and using a number of processorspolynomial in n. This paper proves that perfect matching is in random NCand gives a fast, parallel, randomized algorithm for �nding a perfect matchingin a simple graph. 132
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[KVV90] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm foron-line bipartite matching. In Proc. 22nd Ann. ACM Symp. on Theory ofComputing, pages 352{358, Baltimore, MD, May 1990. An on-line algorithmreceives a sequence of requests and must respond to each request as soon as itis received. In contrast, an o�-line algorithm may wait until all requests havebeen received before determining its responses. The authors give a simple,randomized, optimal, on-line algorithm for bipartite matching.[KW85] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximalindependent set problem. Journal of the ACM, 32(4):762{773, 1985. Thisimportant paper showed that the maximal independent set problem for graphscan be solved in polylogarithmic time using a polynomial number of processeson a PRAM in which concurrent reads and writes are disallowed. They derivetheir algorithm from a randomized one using a technique that has becomeknown as derandomization via k-wise independence.[KZ88] R. M. Karp and Y. Zhang. A randomized parallel branch and bound procedure.In Proc. 20th Ann. ACM Symp. on Theory of Computing, pages 290{300,1988. A general technique assuming no special communication capabilities ispresented.[Lak90] Y. N. Lakshman. On the complexity of computing a Gr�obner basis for theradical of a zero dimensional ideal. In Proc. 22nd Ann. ACM Symp. on Theoryof Computing, pages 555{562, Baltimore, MD, May 1990. Lakshmanan showsthat if a system of polynomials f1, f2; . . . ; fr in n variables with deg(fi) � dover the rational numbers has only �nitely many a�ne zeros, then all thea�ne zeros can be determined in time polynomial in dn by a Las Vegas typerandomized algorithm.[LC88] T.G. Lewis and C.R. Cook. Hashing for dynamic and static internal tables.Computer, 21:45{56, 1988. The authors survey the classical hashing functionapproach to information retrieval and show how general hashing techniquesexchange speed for memory. It is a tutorial paper that covers, among othertopics, dynamic and static hash tables, perfect hashing, and minimal perfecthashing.[Leh27] D. H. Lehmer. Bulletin of the American Mathematical Society, 33:327{340,1927. This paper presents the Lucas-Lehmer heuristic for primality testing.133



www.manaraa.com

[Leh82] D. Lehmann. On primality tests. SIAM Journal on Computing, 11(2), May1982. Lehmann presents two algorithms for testing primality based on the ex-tended Riemann hypothesis. The second algorithm is faster than that proposedby [SS77] as it does not involve computing the Jacobi symbol.[Lei92] T. Leighton. Methods for message routing on parallel machines. In Proc.24th Ann. ACM Symp. on Theory of Computing, pages 77{96, Victoria, B.C.,Canada, May 1992. This survey includes the topic of randomized wiring.[LFKN90] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic methods for in-teractive proof systems. In Proc. 31st Ann. IEEE Symp. on Foundations ofComputer Science, pages 2{10, 1990. The authors present a new algebraictechnique for constructing IP systems and prove that every language in thepolynomial time hierarchy has an interactive proof system. This is a key paperessential for proving IP = PSPACE [Sha92b] and MIP = NEXP [BFL90].[LLM90] F. T. Leighton, D. Lisinski, and B. M. Maggs. Empirical evaluation ofrandomly-wired multistage networks. In Proc. 1990 IEEE Int'l. Conf. onComputer Design, pages 380{385, 1990. This paper presents simulation re-sults comparing the fault-tolerance, delay and other characteristics of butter-ies, dilated butteries and randomly-wired multibutteries. Randomly-wiredmultibutteries perform better by many yardsticks.[LLS87] D. Lichtenstein, N. Linial, and M. Saks. Imperfect random sources and discretecontrolled processes. In Proc. 19th Ann. ACM Symp. on Theory of Comput-ing, pages 169{177, 1987. Imperfect sources are modeled by discrete controlprocesses where the output string of zeros and ones has been tampered withby a controller who can specify certain bits. Several questions concerning themembership of such a string in a prespeci�ed set L are answered.[LLW88] N. Linial, L. Lov�asz, and A. Wigderson. Rubber bands, convex embeddings,and graph connectivity. Combinatorica, 8:91{102, 1988. Several probabilisticalgorithms for connectivity computation, both of the Monte Carlo and LasVegas variety, are given, as is a formalization of the connectivity problem interms of embedded graphs. E�cient parallel implementations are included.(First appeared under the title \A physical interpretation of graph connec-tivity and its algorithmic applications" in Proc. 27th Ann. IEEE Symp. onFoundations of Computer Science, 1986, pp. 39{53.).134
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[LM89] F. T. Leighton and B. M. Maggs. Expanders might be practical: fast algo-rithms for routing around faults in multibutteries. In Proc. 30th Ann. IEEESymp. on Foundations of Computer Science, pages 384{389, 1989. This papercontains a simpler version of Upfal's results [Upf89] and algorithms for routingon randomized multibutteries in the presence of faults.[LM92a] F. T. Leighton and B. M. Maggs. Fast algorithms for routing around faults inmultibutteries and randomly-wired splitter networks. IEEE Trans. on Com-puters, 41(5):578{587, May 1992. This paper describes simple deterministicO(logN)-step algorithms for routing permutations of packets in multibutter-ies and randomly-wired splitter networks. The algorithms are robust againstfaults (even in the worst case) and are e�cient from a practical point of view.[LM92b] F. T. Leighton and B. M. Maggs. The role of randomness in the design ofinterconnection networks. Information Processing, I:291{305, 1992. A surveyof recent research on randomly wired interconnection networks, which havebeen found to be exceptionally fault-tolerant and well-suited for both packet-routing and circuit-switching applications.[LMP+91] F. T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and S. Tragoudas.Fast approximation algorithms for multicommodity ow problems. In Proc.23rd Ann. ACM Symp. on Theory of Computing, pages 101{111, New Orleans,LA, May 1991. The paper presents randomized algorithms for approximatelysolving the multicommodity ow problem. The algorithms run in polynomialtime with high probability.[Lov79] L. Lovasz. On determinants, matchings and random algorithms. In L. Budach,editor, Fundamentals of Computing Theory. Akademia-Verlag, Berlin, 1979.Lovasz describes a probabilistic method for determining the perfect matchingin a simple graph, if one exists, using Tutte's theorem.[LP90] F. T. Leighton and C. G. Plaxton. A (fairly) simple circuit that (usually)sorts. In Proc. 31st Ann. IEEE Symp. on Foundations of Computer Science,pages 264{274, 1990. A k-round tournament over n = 2k payers which hasvery good sorting properties is introduced. There properties are then exploitedin a sorting network and two randomized algorithms.135
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[LPV81] G. Lev, N. Pippenger, and L. Valiant. A fast parallel algorithm for routing inpermutation networks. IEEE Trans. on Computers, C-30(2):93{100, February1981. This paper presents deterministic algorithms for routing in permuta-tion networks. The fastest algorithms require global knowledge and 
(log2N)parallel time.[LR81] D. Lehmann and M. O. Rabin. On the advantage of free choice: A symmetricand fully distributed solution to the Dining Philosophers problem (extendedabstract). In Proc. Eighth Ann. ACM Symp. on Principles of ProgrammingLanguages, pages 133{138, 1981. A classic paper in the area of randomizeddistributed algorithms. They show there is no deterministic, deadlock-free,truly distributed and symmetric solution to the Dining Philosophers problem,and describe a simple probabilistic alternative.[LS91] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols for NEXP-time. In Proc. 32nd Ann. IEEE Symp. on Foundations of Computer Science,pages 13{18, 1991. This paper presents a one-round, zero-knowledge protocol(without cryptographic assumptions) for every language in NEXP-time. Ina multi-prover protocol, several provers try to convince a polynomial-timeveri�er that a string X belongs in language L. Provers cannot communicateamong themselves or observe communications between the veri�er and otherprovers. The protocol ensures that if X is not in L, the probability that theveri�er accepts the string as belonging to L is exponentially small.[LS92] L. Lovasz and M. Simonovits. On the randomized complexity of volume anddiameter. In Proc. 33rd Ann. IEEE Symp. on Foundations of Computer Sci-ence, pages 482{492, 1992. The authors present an O(n7 log2 n) algorithm toapproximate the volume of a convex body, and an O(n6 log n) algorithm tosample a point from the uniform distribution over a convex body.[LS93] J. Lutz and W. Schmidt. Circuit size relative to pseudo-random oracles. Theo-retical Computer Science, 107:95{120, 1993. Assuming pseudo-random oracles,circuit-size complexity is compared with deterministic and non-deterministiccomplexity. The paper also shows that for every p-space random oracle A andalmost every oracle A in EPSPACE, NPA is not contained in SIZEA(2�n)for any real � < 1=3, and EA is not contained in SIZEA(2n=n).136
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[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals problem.ACM Trans. on Programming Languages and Systems, 4(3):382{401, July1982. They proved that Byzantine agreement (the subject of Section 3.5)cannot be reached unless fewer than one-third of the processes are faulty. Thisresult assumes that authentication, i.e., the crypting of messages to make themunforgeable, is not used. With unforgeable messages, they show that the prob-lem is solvable for any n � t > 0, where n is the total number of processesand t is the number of faulty processes.[Lut92] J. Lutz. On independent random oracles. Theoretical Computer Science,92:301{307, 1992. This paper shows that for every random language A � B,P (A)\P (B) = BPP , where P (A) and P (B) are the class of languages in poly-nomial time relativized to A and B. This improves on the results of [Kur87].[LV92] J.-H. Lin and J. S. Vitter. �-approximations with minimum packing constraintviolation. In Proc. 24th Ann. ACM Symp. on Theory of Computing, pages771{782, Victoria, B.C., Canada, May 1992. E�cient randomized and deter-ministic algorithms are presented for transforming optimal solutions for a typeof relaxed integer linear program into provably good approximate solutions forthe corresponding NP-hard discrete optimization problem.[MadH85] F. Meyer auf der Heide. Simulating probabilistic by determining algebraiccomputation trees. Theoretical Computer Science, 41:325{330, 1985. Thispaper overlaps with the paper \Nondeterministic Versus Probabilistic LinearSearch Algorithms," Proc. 26th Ann. IEEE Symp. on Foundations of Com-puter Science, 1985, pp. 65{73. It is shown that nondeterministic algorithmsare less complex than their probabilistic counterparts even when the proba-bilistic choices are assigned zero cost and error is allowed in all computations.The speci�c algorithms considered are linear search algorithms.[MadH90] F. Meyer auf der Heide. Dynamic hashing strategies. In Proc. 15th Symp. onMathematical Foundations of Computer Science, Lecture Notes in ComputerScience, Vol. 452, pages 76{87, Banska Bystrica, Czechoslovakia, August 1990.Springer-Verlag. This paper contains a survey of dynamic hashing techniques.It evaluates hashing algorithms with respect to probability of collisions, bucketsizes, evaluation time, and the time needed to construct a hash function. Par-allel, distributed and sequential algorithms are considered.137
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[MC87] D. Mitra and R. A. Cieslak. Randomized parallel communication on an exten-sion of the Omega network. Journal of the ACM, 34(4):802{824, 1987. Thisis an extension of Valiant and Aleliunas' algorithm to eliminate the need forscheduling. This algorithm also works on networks of �xed degree nodes.[Meh82] K. Mehlhorn. On the program size of perfect and universal has functions. InProc. 23rd Ann. IEEE Symp. on Foundations of Computer Science, pages 170{175, 1982. A must for readers interested in perfect hashing. It proves that forn distinct keys from [0 . . .N�1], there exists a prime number p = O(n2ln(N))such that for any two keys xi and xj, xi(modp) 6= xj(modp). Further, a gooddeterministic algorithm exists for �nding p; it can be determined even moree�ciently using a randomized algorithm. Several other results concerning theconstruction and length of perfect and universal hashing functions are proved.[Meh84a] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, vol-ume 1 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1984. Volume 1 of this three-volume series is an excellent sourcefor searching and sorting algorithms. It contains sections on quicksort (Sec-tion II.1.3), perfect hashing (Section III.2.3)and universal hashing (SectionsIII.2.3).[Meh84b] K. Mehlhorn. Graph Algorithms and NP-Completeness, volume 2 of EATCSMonographs on Theoretical Computer Science. Springer-Verlag, 1984. SectionIV.9.2 gives a probabilistic algorithm for graph connectivity and Section VI.8deals, in part, with primality testing.[Meh84c] K. Mehlhorn. Multi-dimensional searching and computational geometry, vol-ume 3 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1984. This book is the last of three volmes. Chapter 7 is devoted tomulti-dimensional data structures and Chapter 8 to problems in computationalgeometry.[Mig80] M. Mignotte. Tests de primalite. Theoretical Computer Science, 12:109{117,1980. Surveys the �eld of primality testing from a computational complexityperspective. In French.[Mil76] G. L. Miller. Reimann's Hypothesis and test for primality. Journal of Com-puter and System Sciences, 13:300{317, 1976. A seminal paper in the devel-138
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opment of primality testing algorithms. This paper presents two algorithmsfor primality testing. The �rst one runs in O(n 17 ) time. The second one, whichis actually a polynomial time algorithm (O(log4 n)), assumes the ExtendedReimann Hypothesis. This paper also proves a certain class of functions iscomputationally equivalent to factoring integers. (This paper �rst appeared inProc. Seventh Ann. ACM Symp. on Theory of Computing, 1975, pp. 234{239.).[MMN93] J. Matou�sek, D. M. Mount, and N. S. Netanyahu. E�cient randomized algo-rithms for the repeated median line estimator. In Proc. Fourth Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 74{82, Austin, TX, January 1993.Computing a statistical estimator can be viewed as the problem of �tting astraight line to a collection of n points in the plane. The breakdown point of anestimator is the fraction of outlying data points (up to 50%) that may cause theestimator to take on an arbitrarily large aberrant value. The authors present a(not-so simple) O(n log n) randomized expected time algorithm for the prob-lem of computing a 50%-breakdown-point estimator, namely, the Siegel, orrepeated median, estimator. A simpler O(n log2 n) randomized algorithm forthe problem is also given, which the authors contend actually has O(n log n)expected time for \many realistic input distributions.".[MNN89] R. Motwani, J. Naor, and M. Naor. The probabilistic method yields determin-istic parallel algorithms. In Proc. 30th Ann. IEEE Symp. on Foundations ofComputer Science, pages 8{13, Research Triangle Park, NC, Oct 1989. Thispaper presents a method of converting randomized parallel algorithms intodeterministic parallel (NC ) algorithms. Their approach is based on a par-allel implementation of the method of conditional probabilities due to JoelSpencer [Spe88], which was originally introduced with the aim of convertingprobabilistic proofs of existence of combinatorial structures into deterministicalgorithms that can actually construct these structures. Restrictions on thetechnique to a certain class of randomized NC algorithms are discussed.[MNT93] Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity ofuniversal hashing. Theoretical Computer Science, 107:121{133, 1993. Theyprove that any implementation of universal hashing from n-bit strings to m-bit strings requires a time-space tradeo� of TS = 
(nm).139
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[Mon80] L. Monier. Evaluation and comparison of two e�cient probabilistic primalitytesting algorithms. Theoretical Computer Science, 12:97{108, 1980. Monierpresents an interesting comparison of the Miller-Rabin [Rab76] and Solovay-Strassen [SS77] primality testing algorithms, showing that the former is alwaysmore e�cient than the latter. In the process, he proves that at least 3=4 ofthe numbers in the set f1; 2; :::; n � 1g are witnesses to the compositeness ofn, for n composite. This strengthens the bound given in [Rab76].[MOOY92] A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung. Self-stabilizing symmetrybreaking in constant-space. In Proc. 24th Ann. ACM Symp. on Theory ofComputing, pages 667{678, Victoria, B.C., Canada, May 1992. A randomizedprotocol is presented for the problem of self-stabilizing round-robin token man-agement scheme on an anonymous bidirectional ring of identical processors.[Mor82] S. Moran. On accepting density hierarchy in NP. SIAM Journal on Computing,11(2), May 1982. Moran investigates a characterization of sets in NP basedon accepting density of a polynomial time nondeterministic algorithm. Theaccepting density is de�ned as the ratio between the accepting computationsand the total number of computations.[MR89] G. L. Miller and J. H. Reif. Parallel tree contraction, Part 1: Fundamen-tals. In S. Micali, editor, Advances in Computing Research 5: Randomnessand Computation. JAI Press, Greenwich, CT, 1989. They exhibit a random-ized parallel algorithm for subtree isomorphism that uses O(log n) time andO(n= log n) processors. This was the �rst polylog parallel algorithm for theproblem. See also the related paper \Parallel tree contraction and its applica-tions," in Proc. 26th Ann. IEEE Symp. on Foundations of Computer Science,1985, pp. 478{489; and the companion paper [MR91].[MR91] G. L. Miller and J. H. Reif. Parallel tree contraction, Part 2: Further Ap-plications. SIAM Journal on Computing, 20(6):1128{1147, December 1991.In this follow-up of [MR89], the authors present many applications of their\parallel tree contraction technique," including algorithms for subexpressionevaluation, tree and graph isomorphism, and building cononical forms of treesand planar graphs.[MS82] K. Mehlhorn and E. Schmidt. Las Vegas is better than determinism in VLSIand distributed computing. In Proc. 14th Ann. ACM Symp. on Theory of140
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Computing, pages 330{337, 1982. This paper demonstrates a problem wherethe theoretical lower bounds for distributed deterministic solutions can be im-proved using randomness. Let X = (x1; x2; . . .xn), Y = (y1; y2; . . .yn), wherexi and yi are integers between 0 and 2n�1, be stored on two di�erent sites. Thefunction f(X;Y )|which is de�ned to be 1 if there exists an i such that xi = yi,and 0 otherwise|is to be computed with minimum communication. This prob-lem requires n2 message bits in the deterministic case, but an O(n log n log n)average running-time probabilistic algorithm is demonstrated.[MS88] S. Micali and A. Shamir. An improvement of the Fiat-Shamir identi�ca-tion and signature scheme. In Advances in Cryptology{CRYPTO 88, LectureNotes in Computer Science, Vol. 403. Springer-Verlag, 1988. They speed upzero-knowledge based identi�cation and digital signature schemes of Fiat andShamir, which require only 10 to 30 modular multiplications per party. Theirimproved scheme reduces the veri�er's complexity to less than 2 modular mul-tiplications and leaves the prover's complexity unchanged.[MS92] B. M. Maggs and R. K. Sitaraman. Simple algorithms for routing on butterynetworks with bounded queues. In Proc. 24th Ann. ACM Symp. on Theory ofComputing, pages 150{161, Victoria, B.C., Canada, May 1992. The authorspresent a simple, but non-pure, algorithm for routing a random problem ona fully loaded N -input buttery with bounded-size queues in O(logN) steps,with high-probability.[MSV85] F. Ma�oli, M. G. Speranza, and C. Vercellis. Randomized algorithms. Com-binatorial Optimization|Annotated Bibliographies, pages 89{105, 1985. Thisis a useful annotated bibliography on randomized algorithms.[MSW92] J. Matousek, M. Sharir, and E. Welzl. A subexponential bound for linearprogramming. In Proc. Eighth Ann. ACM Symp. on Computational Geometry,pages 1{8, Berlin, Germany, June 1992. They present a simple randomizedalgorithm which solves linear programs with n constants and d variables inexpected O(nde4pd ln(n+1)) time in the unit cost model.[MT85] U. Manber and M. Tompa. Probabilistic, nondeterministic and alternatingdecision trees. Journal of the ACM, 32(3):720{732, July 1985. This papercompares lower bounds on the running times of algorithms that allow proba-bilistic, non-deterministic and alternating control on decision trees. Decision141
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trees that allow internal randomization at the expense of a small probabilityof error are shown to run no faster asymptotically than ordinary decision treesfor a collection of problems. An earlier version of this publication appeared inProc. 14th Ann. ACM Symp. on Theory of Computing, 1982, pp. 234{244.[Mul] K. Mulmuley. Computational geometry: An introduction through randomizedalgorithms. This book, due out in Fall 1993, presents a number of randomizedalgorithms for problems in computational geometry. The book is meant toserve as an introduction to computational geometry; the author chooses ran-domized algorithms to do the job as they are usually simpler to understandthan their deterministic counterparts. The book is divided into two parts, ba-sics and applications. Application areas considered include arrangements ofhyperplanes, convex polytopes, range search, and computer graphics. A chap-ter on derandomization is also given.[Mul89] K. Mulmuley. On obstructions in relation to a �xed view point. In Proc.30th Ann. IEEE Symp. on Foundations of Computer Science, pages 592{597,Oct 1989. Randomized algorithms for the following computational geometryproblems are given: (1) construction of levels of order 1 to k in an arrangementof hyperplanes; (2) construction of Voronoi diagrams of order 1 to k, and (3)hidden surface removal for a general scene. Both (1) and (2) are solved in anydimension, and (3) allows intersection of curved surfaces.[Mul91a] K. Mulmuley. Randomized multidimensional search trees: Dynamic sampling.In Proc. Seventh Ann. ACM Symp. on Computational Geometry, pages 121{131, North Conway, NH, June 1991. This paper develops a general technique,called dynamic sampling, that can be used to \dynamize" randomized incre-mental algorithms, so to allow additions as well as deletions of objects frommultidimensional search trees.[Mul91b] K. Mulmuley. Randomized multidimensional search trees: Further resultsin dynamic sampling. In Proc. 32nd Ann. IEEE Symp. on Foundations ofComputer Science, pages 216{227, 1991. This paper extends the approachpresented in [Mul91c] to Nearest Neighbors and other problems.[Mul91c] K. Mulmuley. Randomized multidimensional search trees: Lazy balancing anddynamic shu�ing. In Proc. 32nd Ann. IEEE Symp. on Foundations of Com-puter Science, pages 180{196, 1991. This paper presents a general randomized142
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algorithm for problems such as the construction and management of ConvexHulls and Voronoi Diagrams.[Mul92] K. Mulmuley. Randomized geometric algorithms and pseudo-random genera-tors. In Proc. 33rd Ann. IEEE Symp. on Foundations of Computer Science,pages 90{100, 1992. This paper shows that a generalization of the familiarlinear congruential pseudo-random generator that uses O(log n) bits can besubstituted for the random source in many randomized incremental algorithmsused in computational geometry without a�ecting the order of complexity ofthe expected running time, thereby reducing the number of truly random bitsneeded.[Mut93] S. Muthukrishnan. Detecting false matches in string matching algorithms. InProc. Fourth Int'l. Conf. on Combinatorial Pattern Matching, Lecture Notesin Computer Science, Vol. 684, pages 164{178, Padova, Italy, 1993. Springer-Verlag. The Karp and Rabin randomized string matching algorithm [KR87]may report, with a small probability, a false match. Muthukrishnan presents aparallel algorithm to detect the existence of such a false match. His algorithmruns in O(1) time and uses O(n) CRCW PRAM processors, where n is thelength of the input text, and can be used to e�ciently convert the MonteCarlo Type string matching algorithm of Karp and Rabin into a Las Vegastype algorithm. Muthukrishnan also considers the problem of detecting allfalse matches.[MV91] Y. Matias and U. Vishkin. Converting high probability into nearly constanttime { with applications to parallel hashing. In Proc. 23rd Ann. ACM Symp.on Theory of Computing, pages 307{316, New Orleans, LA, May 1991. Ran-domized parallel algorithms are given for constructing a perfect hash functionin expected polylogarithmic time and for generating a random permutation inpolylogarithmic time.[MVN93] Y. Matias, J. S. Vitter, and W.-C. Ni. Dynamic generation of discrete randomvariables. In Proc. Fourth Ann. ACM-SIAM Symp. on Discrete Algorithms,pages 361{370, Austin, TX, January 1993. E�cient randomized algorithms aregiven to generate a random variate distributed according to a dynamically setof weights. The base version of each algorithm generates the discrete randomvariate in O(log�N) expected time and updates a weight in O(2log�N) expected143
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time in the worst case. It is shown how to reduce the update time to O(log�N)amortized expected time.[MVO91] A. Menezes, S. Vanstone, and T. Okamoto. Reducing elliptic curve logarithmsto logarithms in a �nite �eld. In Proc. 23rd Ann. ACM Symp. on Theory ofComputing, pages 80{89, New Orleans, LA, May 1991. They present a prob-abilistic polynomial-time algorithm for the elliptic curve logarithm problem,the �rst subexponential-time, general-purpose algorithm for the problem.[MVV87] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrixinversion. Combinatorica, 7:105{113, 1987. An elegant parallel, randomizedalgorithm for �nding a perfect matching in a simple graph based on Tutte'smatrix is presented. The algorithm, which is made possible by a probabilisticlemma called the isolation lemma, requires inversion of a single integer matrixwhich can be parallelized.[MW90] B. McKay and N. Wormald. Uniform generation of random graphs of moderatedegree. Journal of Algorithms, 11:52{67, 1990. A randomized algorithm isgiven for generating k-regular graphs on n vertices, uniformly at random. Theexpected running time of the algorithm is O(nk3) for k = O(n 13 ). Special cases,such as bipartite graphs with given degree sequences, are considered.[MWHC93] B.S. Majewski, N.C. Wormald, G. Havas, and Z.J. Czech. Graphs, hyper-graphs and hashing. In Proc. 19th Int'l. Workshop on Graph-Theoretic Con-cepts in Computer Science (WG'93), Utrecht, The Netherlands, June 1993.The authors generalize the method presented in [CHM92] by mapping theinput set into a hypergraph rather than a graph. This modi�cation allows areduction in the size of the program, while maintaining all other features ofthe method. Also, the hash function generation time is reduced.[MZ86] N. Megiddo and E. Zemel. An O(n log n) randomizing algorithm for theweighted Euclidean 1-center problem. Journal of Algorithms, 7(3):358{368,Sep 1986. A set of points pi = (xi; yi) and their weights wi, 1 � i � n are given.It is required to �nd a point p that minimizes the maximum �rst moment ofthe weights of the pi s, i.e., the p that minimizes H(p) =MAX1�i�nwi d(p; pi)where d(p; pi) is the magnitude of the distance between p and pi. A randomizedalgorithm that does this with a small probability of error is presented.144
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[Nat92] B. K. Natarajan. Probably approximate learning over classes of distributions.SIAM Journal on Computing, 21(3):438{449, June 1992. Natarajan generalizesthe model of probably approximate learning proposed by Valiant [Val84b].[Nis90] N. Nisan. Pseudorandom generators for space-bounded computations. InProc. 22nd Ann. ACM Symp. on Theory of Computing, pages 204{212, Balti-more, MD, may 1990. Pseudorandom generators are constructed that convertO(S logR) truly random bits to R bits that appear random to any algorithmthat runs in SPACE(S). In particular, any randomized polynomial time algo-rithm that runs in space S can be simulated using only O(S log n) randombits. Applications are given for \deterministic ampli�cation," the problem ofreducing the probability of error of randomized algorithms.[Nis93] N. Nisan. On read-once vs. multiple access to randomness in logspace. The-oretical Computer Science, 107:135{144, 1993. This paper shows that everylanguage accepted with bounded two-sided error by a read-once randomizedlogspace machine can be accepted with zero error by a randomized logspacemachine with multiple access to the random bits. Also, the class of languagesaccepted with two-sided error by a randomized logspace machine with multi-ple access to the random bits is shown to be the class of languages that are inlogspace relative to almost every oracle.[NN90] J. Naor and M. Naor. Small-bias probability spaces: E�cient constructionsand applications. In Proc. 22nd Ann. ACM Symp. on Theory of Computing,pages 213{223, Baltimore, MD, May 1990. This paper shows an e�cientconstruction of a small probability space on n binary random variables suchthat for every subset, its parity is either zero or one with \almost" equalprobability. Applications are shown in problems such as the derandomizationof algorithms and reducing the number of random bits required by certainrandomized algorithms.[NS93] M. Naor and L. Stockmeyer. What can be computed locally? In Proc. 25thAnn. ACM Symp. on Theory of Computing, pages 184{193, San Diego, CA,May 1993. In the context of a distributed network, Naor and Stockmeyerinvestigate Locally Checkable Labeling (LCL) problems, where the legality of alabeling (e.g., coloring) can be checked locally; i.e., within time (or distance)independent of the size of the network. Among their results they show that145
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randomization cannot make an LCL problem local; i.e., if a problem has alocal randomized algorithm then it has a local deterministic algorithm.[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure againstchosen cypher-text attack. In Proc. 22nd Ann. ACM Symp. on Theory ofComputing, pages 427{437, 1990. The authors show how to construct a public-key cryptosystem secure against chosen ciphertest attacks, given a publi-keycryptosystem secure against passive eavesdropping and a noninteractive zero-knowledge proof system in the shared string model.[NZ93] N. Nisan and D. Zuckerman. More deterministic simulation in logspace. InProc. 25th Ann. ACM Symp. on Theory of Computing, pages 235{244, SanDiego, CA, May 1993. It is shown that any randomized space(S) algorithm thatuses only poly(S) random bits can be simulated deterministically in space(S),for S(n) � log n.[Ore87] Y. Oren. On the cunning power of cheating veri�ers: Some observationsabout zero knowledge proofs. In Proc. 28th Ann. IEEE Symp. on Founda-tions of Computer Science, pages 462{471, 1987. Oren di�erentiates betweenauxiliary-input zero-knowledge and blackbox-simulation zero-knowledge. Heshows that all known zero-knowledge proofs are in the latter category. In ad-dition, it is proved that blackbox-simulation zero-knowledge implies auxiliary-input knowledge, and that the latter corresponds to the original de�nitiongiven in [GMR89].[Pac87] J. Pachl. A lower bound for probabilistic distributed algorithms. Journal of Al-gorithms, 8(1):53{65, 1987. The minimum number of messages required to �ndthe extremal value of node ids in an asynchronous network deterministicallyis �(n log n). This paper shows that this bound holds even for probabilisticalgorithms.[Paz71] A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971. Pazdevelops a theory of equivalence among probabilistic automata.[Pel90] M. Pellegrini. Stabbing and ray shooting in 3 dimensional space. In Proc. SixthAnn. ACM Symp. on Computational Geometry, pages 177{186, Berkeley, CA,June 1990. The author presents a number of results about line stabbing andray shooting including the following two: (1) One can determine the the �rst146
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triangles hit by m rays in a set of n disjoint triangles using a randomizedalgorithm whose expected running time is O(m5=6��n5=6+5� log2 n+m log2 n+n log n logm); and (2) One can determine the �rst box hit by m rays in a setof disjoint axis-oriented boxes using a randomized algorithm whose expectedrunning time is O(m3=4��n3=4+3� log4 n+m log4 n+n log n logm). Here � is anyconstant greater than zero.[Pel92] M. Pellegrini. Incidence and nearest neighbor problems for lines in 3-space. InProc. Eighth Ann. ACM Symp. on Computational Geometry, pages 130{137,Berlin, Germany, June 1992. Given a set of n lines in 3-space, this paperdemonstrates a randomized algorithm that �nds the shortest vertical segmentbetween any pair of lines in randomized expected time O(n8=5+�) for every� > 0.[Pel93] M. Pellegrini. On line missing polyhedral sets in 3-space (extended abstract).In Proc. Ninth Ann. ACM Symp. on Computational Geometry, pages 19{28,San Diego, CA, May 1993. Pellegrini gives an O(n1:5+�) randomized expectedtime algorithm that tests the separation property: does there exist a directionv along which a set of n red lines can be translated away from a set of n bluelines without collisions?[Per85] K. Perry. Randomized Byzantine agreement. IEEE Trans. on Software Engi-neering, SE-11(6):539{546, June 1985. Perry presents randomized algorithmsfor Byzantine agreement that, like the algorithm of Rabin [Rab83], terminatein an expected number of rounds which is a small constant independent of nand t. As usual, n is the total number of processes and t is the number offaulty processes. However, Perry's algorithm can tolerate a greater number offaulty processes. He requires only that n � 6t + 1 in the asynchronous caseand n � 3t+ 1 in the synchronous case.[Pet82] G. L. Peterson. AnO(n log n) unidirectional algorithm for the circular extremaproblem. ACM Trans. on Programming Languages and Systems, 4(4):758{762, October 1982. Peterson presents a deterministic distributed algorithmfor �nding the largest of a set of n uniquely numbered processes in a ring. Thealgorithm requires O(n log n) messages in the worst case, and is unidirectional.The number of processes is not initially known.147
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[Pit89] L. Pitt. Probabilistic inductive inference. Journal of the ACM, 36(2):383{433, 1989. Inductive inference machines construct total recursive functions�(x) given examples of the input and output of �. Probabilistic inductiveinference machines are permitted coin tosses while constructing �, and areonly required to construct � with probability p, 0 < p < 1. This paper shows adiscrete hierarchy of inferability parameterized by p, for p � 1=2. Any machinethat can be constructed by probabilistic inference with p > 1=2 can also beconstructed deterministically.[Pra75] V. R. Pratt. Every prime has a succinct certi�cate. SIAM Journal on Comput-ing, 4(3):214{220, 1975. This paper proves, using the Lucas-Lehmer heuristicfor testing primeness, that just like composite numbers, the primeness of aprime number n can be demonstrated by an O(log n) long proof.[PS83] R. Paturi and J. Simon. Lower bounds on the time of probabilistic on-linesimulations. In Proc. 24th Ann. IEEE Symp. on Foundations of ComputerScience, pages 343{350, 1983. They show that coin tossing cannot compensatefor inadequate memory access.[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence offaults. Journal of the ACM, 27(2):228{234, 1980. This paper is similar to their1982 publication [LSP82], but contains a rigorous proof of the impossibility ofByzantine agreement for the case n = 3, t = 1. As usual, n is the total numberof processes and t is the number of faulty processes.[PU90] D. Peleg and E. Upfal. A time-randomness tradeo�s for oblivious routing.SIAM Journal on Computing, 19:256{266, 1990. This is a companion paperof [KPU88].[Pug90] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Commu-nications of the ACM, 33(6):668{676, June 1990. This paper presents skiplists, a list in which a node may have a pointer to a node some number ofplaces ahead of it on the list. Such pointers, called \forward pointers", there-fore \skip" over intermediate nodes. A node with k forward pointers is saidto be a level k node. Skip lists are probabilistic in that the level of a node ischosen randomly with the property that a node's ith forward pointer pointsto the next node of level i or higher. It is shown that skips lists can e�ciently148
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implement abstract data types such as dictionaries and ordered lists in thatthe expected time to search for an item is O(log n).[PZ86] A. Pnueli and L. Zuck. Veri�cation of multiprocess probabilistic protocols. Dis-tributed Computing, 1:53{72, 1986. They present a temporal logic for provingliveness properties of probabilistic concurrent programs based on the notionof \extreme fairness".[Rab63] M. O. Rabin. Probabilistic automata. Information and Control, 6:230{245,1963. This is a seminal paper on the theory of probabilistic automata. Rabinde�ned the notion of a language being accepted by a probabilistic automatonrelative to a cutpoint lambda. One of his key results was to show that thereexist �nite state probabilistic automata that de�ne non-regular languages.[Rab76] M. O. Rabin. Probabilistic algorithms. In J.F. Traub, editor, Algorithmsand Complexity: New Directions and Recent Results, pages 21{39. AcademicPress, 1976. This classic paper on probabilistic algorithms features algorithmsfor primality testing and nearest neighbors.[Rab80a] M. O. Rabin. A probabilistic algorithm for testing primality. Journal of Num-ber Theory, 12, 1980. Rabin's paper introduces another celebrated algorithmfor fast, randomized primality testing. This paper is based on a di�erent num-ber theoretic property than that used by Solovay and Strassen [SS77].[Rab80b] M. O. Rabin. Probabilistic algorithms in �nite �elds. SIAM Journal on Com-puting, 9(2):273{280, May 1980. Rabin presents probabilistic algorithms for�nding an irreducible polynomial of degree n over a �nite �eld, the roots of apolynomial, and the irreducible factors of a polynomial.[Rab83] M. O. Rabin. Randomized Byzantine Generals. In Proc. 24th Ann. IEEESymp. on Foundations of Computer Science, pages 403{409, 1983. Rabinpresents a randomized algorithm for asynchronous Byzantine agreement thatterminates in a constant expected number of rounds. Cryptography is used tosimulate a trusted dealer that distributes random coin tosses before the startof the algorithm. Rabin's algorithm works only if less than one-tenth of allprocesses are faulty.[Rac82] C. Racko�. Relativized questions involving probabilistic algorithms. Journal ofthe ACM, 29(1):261{266, January 1982. Racko� attempts to prove R 6= P by149
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assuming P 6= NP and relativization (i.e., for a class of languages C, CA is thesame as C except that one can answer questions concerning membership in Ain constant time). Interestingly, he proves that for some oracle A, PA 6= NPAand RA 6= PA, and at the same time, for some other oracle B, PB 6= NPBand RB 6= PB. An earlier version of this paper appeared in Proc. 10th Ann.ACM Symp. on Theory of Computing, 1978, pp. 338{342.[Rag88] P. Raghavan. Probabilistic construction of deterministic algorithms: Approx-imating packing integer problems. Journal of Computer and System Sciences,37:130{143, 1988. Based on the derandomization technique of conditionalprobabilities, Raghavan develops a methodology for converting the probabilis-tic existence proof of a near-optimum integer solution to an integer programinto a deterministic approximation algorithm.[Rag90] P. Raghavan. Lecture notes on randomized algorithms. Research Report RC15340 (#68237), IBM T.J. Watson Research Center, January 1990. This Re-search Report consists of lecture notes from a course taught by the author.These notes give a thorough introduction to many randomized algorithms incomputational geometry, graph theory, VLSI, and networks. The basic math-ematical background essential for understanding these algorithms is presentedin detail.[Raj91a] S. Rajasekaran. k � k routing, k � k sorting, and cut through routing on themesh. Technical Report MS-CIS-91-93, Dept. of Computer and InformationSciences, Univ. of Pennsylvania, Philadelphia, PA, 1991. This paper presentsrandomized algorithms for k�k routing, k�k sorting, and cut through routingon mesh connected computers. The time bounds of these algorithms improveupon those of the best known algorithms prior to this paper.[Raj91b] S. Rajasekaran. Randomized algorithms for packet routing on the mesh. Tech-nical Report MS-CIS-91-92, Dept. of Computer and Information Sciences,Univ. of Pennsylvania, Philadelphia, PA, 1991. E�cient randomized algo-rithms for sore and forward, multipacket, and cut through routing of packetson a mesh connected computer are surveyed. The expected running times andqueueing complexity of these algorithms are analyzed.[Ram93] H. Ramesh. On traversing layered graphs on-line. In Proc. Fourth Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 412{421, Austin, TX, January150
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1993. A layered graph is a connected weighted graph whose vertices are par-titioned into sets (i.e., layers) L0, L1, L2; . . ., and all edges connect veticesin consecutive layers. Ramesh presents a randomized on-line algorithm fortraversing width-w layered graphs with a competitive ratio of O(w15). His al-gorithm represents the �rst polynomially competitive randomized algorithmfor layered graph traversal.[Rei80] J. H. Reif. Logics for probabilistic programs. In Proc. 12th Ann. ACM Symp.on Theory of Computing, 1980. Reif presents yet another attempt at a formallogic, PROB-DL, for probabilistic programs.[Rei81] R. Reischuk. A fast probabilistic parallel sorting algorithm. In Proc. 22ndAnn. IEEE Symp. on Foundations of Computer Science, pages 212{219, 1981.Reischuk considers the problems of selecting k smallest elements out of a setof n keys, and sorting the n elements using n processors in parallel. He showsthat the former can be done in constant time with probability 1 � 2�cn 18 andthe later in O(log n) time. This achieves the information theoretic lower-boundin terms of processor-time product as well as the optimal speed-up attainableusing n processors.[Rei85a] J. H. Reif. Optimal parallel algorithms for integer sorting and graph connec-tivity. In Proc. 26th Ann. IEEE Symp. on Foundations of Computer Science,1985. This paper contains some results on the use of randomization in parallelalgorithms.[Rei85b] R. Reischuk. Probabilistic parallel algorithms for sorting and selection. SIAMJournal on Computing, 14(2):396{409, May 1985. This paper considers theproblems of selecting the k smallest elements out of a set of n keys, andsorting the n keys using n processors in parallel. Reischuk showed that theformer can be done in constant time with probability 1 � 2�cn 18 and the laterin O(log n) time. Both algorithms meet the corresponding information theo-retic lower bounds in terms of processor-time product as well as the optimalspeed-up attainable using n processors. An earlier version appeared as \A FastProbabilistic Parallel Sorting Algorithm" in Proc. 22nd Ann. IEEE Symp. onFoundations of Computer Science, 1981, pp. 212{219.[RP91] M. V. Ramakrishna and G. A. Portice. Perfect hashing functions for hardwareapplications. In Proc. Seventh Int'l. Conf. on Data Engineering, April 1991. A151
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hardware scheme for constructing an associative memory using a perfect hashfunction is described. A simple trail and error scheme is used to �nd a perfecthash function.[RR89] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomizedparallel sorting algorithm. SIAM Journal on Computing, 18(3):594{607, June1989. This paper presents an optimal, randomized, parallel algorithm forsorting n numbers in the range [1 . . .n] on a parallel random access machinethat allows both concurrent reads and concurrent writes of a global memory.[RS82] J. H. Reif and P. G. Spirakis. Real time resource allocation in distributedsystems. In Proc. First Ann. ACM Symp. on Principles of Distributed Com-puting, pages 84{94, 1982. This paper considers a resource allocation problemin distributed systems and provides real-time solutions in the form of twoprobabilistic algorithms.[RS84] J. H. Reif and P. G. Spirakis. Real time synchronization of interprocess com-munication. ACM Trans. on Programming Languages and Systems, 6:215{238, 1984. They present probabilistic distributed algorithms for the guard-scheduling problem (Section 3.2) that guarantee real-time response. A prelim-inary version of this paper appeared as \Distributed Algorithms for Synchro-nizing Interprocess Communication in Real Time," in Proc. 13th Ann. ACMSymp. on Theory of Computing, 1981.[RS89] J. H. Reif and S. Sen. Polling: A new random sampling technique for compu-tational geometry. In Proc. 21st Ann. ACM Symp. on Theory of Computing,pages 394{404, 1989. A randomized sampling technique called polling is in-troduced. For the �rst time, this technique allows the calculation of `highlikelihood bounds' rather than simply expected running time, in computa-tional geometric randomized algorithms. The technique is illustrated using analgorithm for the intersection of half-spaces in three dimensions.[RS92] J. H. Reif and S. Sen. Optimal parallel randomized algorithms for three-dimensional convex hulls and related problems. SIAM Journal on Computing,21(3):466{485, June 1992. An optimal parallel randomized algorithm for com-puting the intersection of half-spaces in 3-D is given. The algorithm providese�cient solution techniques for convex hulls in 3-D and Vornoi diagrams ofpoint sites on a plane. An earlier version of the paper appeared as \Polling:152
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a new random sampling technique for computational geometry" in Proc. 21stAnn. ACM Symp. on Theory of Computing, 1989, pp. 394{404.[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. Amethod for obtaining digital signa-tures and public key cryptosystems. Communications of the ACM, 21(2):120,February 1978. The basics of trap-door functions and the famous RSA publickey cryptosystem are presented in this paper.[Rub81] R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley &Sons, 1981. This work is an in-depth look at the use of random sampling (theMonte Carlo method) in the context of simulation and numerical integration.[RV89] M. Rabin and Vazirani V. Maximum matchings in general graphs throughrandomization. Journal of Algorithms, 10:557{567, 1989. This paper presentsa conceptually simple algorithm for maximal matching in a graph of n nodeswith complexity O(M(n)n log log n), where M(n) is the number of operationsneeded to multiply two n� n matrices.[RW89] R. Raz and A. Wigderson. Probabilistic communication complexity of booleanrelations. In Proc. 30th Ann. IEEE Symp. on Foundations of Computer Sci-ence, pages 562{567, 1989. Exponential gaps are demonstrated between de-terministic and probabilistic complexity, and between the probabilistic com-plexity of monotone and non-monotone relations.[Sal69] A. Salomaa. Theory of Automata. Pergamon Press, 1969. Chapter 2 ofthis book discusses probabilistic automata and develops a general theory ofstochastic languages.[Sch78] J. Schwartz. Distributed synchronization of communicating sequential pro-cesses. Technical report, DAI Research Report 56, University of Edinburgh,1978. Schwartz presents a distributed algorithm for CSP output guards basedon priority ordering of processes. A probabilistic algorithm for output guardsis described in Section 3.2.[Sch79] J. T. Schwartz. Probabilistic algorithms for veri�cation of polynomial iden-tities. In ISSAC '79: Proc. Int'l. Symp. on Symbolic and Algebraic Compu-tation, Lecture Notes in Computer Science, Vol. 72. Springer-Verlag, 1979.This paper, which also appeared in Journal of the ACM , 1980, pp. 701{717,153
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presents probabilistic methods for testing polynomial identities and propertiesof systems of polynomials.[Sch82] F. B. Schneider. Synchronization in distributed programs. ACM Trans.on Programming Languages and Systems, 4(2):1982, April 1982. Schneiderpresents a timestamp-based distributed algorithm for CSP output guards. Aprobabilistic algorithm for output guards is described in Section 3.2.[Sch84] M. R. Schroeder. Number Theory in Science and Communication with Appli-cations in Cryptography, Physics, Biology, Digital Information and Comput-ing. Springer-Verlag, 1984. Schroeder presents intuitive discussions on primenumbers, their distribution, fractions, congruences, etc. Several applications ofnumber theory in such diverse �elds as cryptography and Fraunhofer di�rac-tion are discussed. A good source of basic number theory results for algorithmdesigners.[Sch88] A. Schonhage. Probabilistic computation of integer polynomial GCDs. Journalof Algorithms, 9(3):365{371, September 1988. The GCD of two univariateinteger polynomials of degree � n, with their l1 norms bounded by 2n, isshown to be reducible to GCD computation for long integers. A probabilisticapproach yields an expected complexity of O(n(n + h)1+o(1)) bit operations.[Sch91] O. Schwarzkopf. Dynamic maintenance of geometric structures made easy.In Proc. 32nd Ann. IEEE Symp. on Foundations of Computer Science, pages180{196, 1991. Schwarzkopf presents a randomized algorithm for maintainingConvex Hulls with m points that runs in expected time O(logm) per updatefor dimensions 2 and 3, O(m logm) for dimensions 4 and 5, and O(mbd=2c�1)for dimensions greater than 5.[Sei90] R. Seidel. Linear programming and convex hulls made easy. In Proc. SixthAnn. ACM Symp. on Computational Geometry, pages 211{215, Berkeley, CA,June 1990. Seidel presents two simple randomized algorithms. One solveslinear programs involving m constraints in d variables in expected time O(m).The other constructs convex hulls of n points in <d, d > 3 in expected timeO(nbd=2c). In both bounds, d is considered to be a constant.[Sei91] R. Seidel. A simple and fast incremental randomized algorithm for comput-ing trapezoidal decompositions and for triangulating polygons. Computational154
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Geometry: Theory and Applications, 1:51{64, 1991. Seidel's randomized algo-rithm runs in O(n log� n) expected time and is simpler than the deterministicO(n) algorithm due to B. Chazelle.[Sei92] R. Seidel. On the all-pairs-shortest-path problem. In Proc. 24th Ann. ACMSymp. on Theory of Computing, pages 745{749, Victoria, B.C., Canada, May1992. Given an undirected, unweighted n-vertex graph, a simple randomizedalgorithm is presented that �nds a shortest path between each pair of verticesin expected O(M(n) log n) time, whereM(n) is the time necessary to multiplytwo n� n matrices of small integers.[Sha92a] J. Shallit. Randomized algorithms in \primitive cultures". SIGACT News,23(4):77{80, 1992. Shallit, in a slightly tongue-in-cheek manner, traces backsome of the concepts of randomized algorithms to the native American societyof the Naskapi and the central African society of the Azande. Roots in theworks of Pierre Laplace and Lord Kelvin are also pointed out.[Sha92b] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4), 1992. This papershows that the set of problems for which interactive protocols exist is preciselythe set of problems which are solvable within polynomial space on a Turingmachine.[Sho93] V. Shoup. Fast construction of irreducible polynomials over �nite �elds. InProc. Fourth Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 484{492, Austin, TX, January 1993. A randomized algorithm is presented thatconstructs an irreducible polynomial of given degree n over a �nite �eld Fq.It uses an expected number of O�(n2 + n log q) operations in Fq, where the\soft-O" O� indicates an implicit factor of (log n)O(1).[Sie89] A. Siegel. On universal classes of fast high performance hash functions, theirtime-space tradeo�, and their applications. In Proc. 30th Ann. IEEE Symp.on Foundations of Computer Science, pages 20{25, Oct 1989. An algorithmfor constructing log n-wise independent hash functions that can be evaluatedin constant time is presented.[Sip88] M. Sipser. Expanders, randomness, or time versus space. Journal of Computerand System Sciences, 36, 1988. Contains a discussion on e�ciently reducing155
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the probability of error in randomized algorithms. It also describes a relation-ship between pseudorandomness, time and space used by certain algorithms ifcertain types of expander graphs can be explicitly constructed.[Smi83] J. Smith. Public key cryptography. Byte, pages 198{218, January 1983. Thisis a simple exposition of public key cryptography.[Spe88] J. Spencer. Ten lectures on the probabilistic method. SIAM Journal on Com-puting, 1988. Spencer presents a method of converting probabilistic proofsof existence of certain combinatorial structures into deterministic algorithmsthat construct these structures.[Spi82] P. G. Spirakis. Probabilistic Algorithms, Algorithms with Random Inputs andRandom Combinatorial Structures. PhD thesis, (UMI Order Number DA8216206) Harvard University, Cambridge, MA, 1982. This thesis puts fortha new model, `Random Independence Systems', for the probabilistic analysisof deterministic algorithms with random inputs, i.e., algorithms for which thespace of all inputs has a known probability distribution. It also presents twoprobabilistic algorithms with real time response for the problem of communi-cation guard scheduling.[Spr77] R. Sprugnoli. Perfect hash functions: A single probe retrieval method forstatic sets. Communications of the ACM, 20:841{850, 1977. This is the �rstdiscussion on perfect hashing; describes heuristics for constructing perfect hashfunctions.[SS77] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAMJournal on Computing, 6(1):84{85, March 1977. Another test for primalitybased on the abundance of witnesses to compositeness of n is presented. Thetest entails picking a random number a (1 � a < n) and computing " =a(n�1)=2( (mod n)), where �1 � " < n � 2. If the Jacobi symbol � = (a=n)equals " then n is prime, else, if either gcd(a; n) > 1 or � 6= ", decide n to becomposite. The second decision has less than 12 probability of being wrong.[SS78] R. Solovay and V. Strassen. Erratum: A fast Monte-Carlo test for primality.SIAM Journal on Computing, 7(1), Feb. 1978. A minor correction in the anal-ysis presented in [SS77] is reported by the authors. The basic results of [SS77],however, still hold. 156
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[SS90] J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hashfunctions. SIAM Journal on Computing, 19(5):775{786, 1990. This papergives, among other results, a lower bound for the average space required byprogram for oblivious k-probe hash function. A probabilistic construction ofa family of oblivious k-probe hash function that nearly match this bound isalso given.[SSS93] J. P. Schmidt, A. Siegel, and A. Srinivasan. Cherno�-Hoe�ding bounds for ap-plications with limited independence. In Proc. Fourth Ann. ACM-SIAM Symp.on Discrete Algorithms, pages 331{340, Austin, TX, January 1993. Cherno�-Hoe�ding bounds are frequently used in the design and analysis of randomizedalgorithms to bound the tail probabilities of the sums of bounded and inde-pendent random variables. The authors give a simple technique which givesslightly better bounds than these and which requires only limited independenceamong the random variables.[Sto85] L. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Com-puting, 14(4):849{861, 1985. The author explores the e�ect of approximationand randomization on the complexity of counting problems (Valiant's class#P which has problems such as counting the number of perfect matchings ina graph, the size of backtrack search trees, etc.).[SV86] M. Santha and U. V. Vazirani. Generating quasi-random sequences from semi-random sources. Journal of Computer and System Sciences, 33(1):75{87, April1986. The authors introduce the notion of semi-random sources where the nextbit of the output is produced by an adversary by the ip of a coin of variablebias. The adversary can look at the previously output bits, and use them toset the bias in the coin. The bias, which helps model correlation among bits,is constrained to be between two limits.[TN91] T. Tokuyama and J. Nakano. Geometric algorithms for a minimum cost as-signment problem. In Proc. Seventh Ann. ACM Symp. on ComputationalGeometry, pages 262{271, North Conway, NH, June 1991. An e�cient ran-domized algorithm is given for the minimum cost �-assignment problem, whichis equivalent to the minimum weight one-to-many matching problem in a com-plete bipartite graph � = (A;B). If A and B have n and k nodes respectively,then the algorithm requires O(kn + k3:5n0:5) expected time.157
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[TO92] S. Toda and M. Ogiwara. Counting classes are at least as hard as thepolynomial-time hierarchy. SIAM Journal on Computing, 21(2):316{328, April1992. Many counting classes are shown to be computationally as hard as thepolynomial time hierarchy, under a notion of randomized reducibility, unlessthe polynomial-time hierarchy collapses.[Tut47] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathe-matical Society, 22:107{111, 1947. Let G(V;E) be a given simple graph whereV = f1; 2; . . .ng. Associate a variable xij with each edge eij 2 E and de�nethe n� n matrix B = [bij] as follows. If there is no edge between vertex i andvertex j them bij = 0. Otherwise, bij = xij if i > j and bij = �xij if i < j.This paper proves that G has a perfect matching if and only if det(B) 6= 0.[TW87] M. Tompa and H. Woll. Random self-reducibility and zero-knowledge inter-active proofs of possession of information. In Proc. 28th Ann. IEEE Symp.on Foundations of Computer Science, pages 472{482, 1987. Tompa and Wollpresent a general theory, of which IP proofs for graph isomorphism, quadraticresiduosity and knowledge of discrete logarithms are special cases.[Tze89] W. G. Tzeng. The equivalence and learning of probabilistic automata. In Proc.30th Ann. IEEE Symp. on Foundations of Computer Science, pages 268{273,1989. The equivalence problem of probabilistic automata is solvable in timeO((n1+n2)4), where n1 and n2 are the number of states in the two automata.The problem of learning probabilistic automata by a system of queries inpolynomial time is also presented.[Upf89] E. Upfal. An O(logN) deterministic packet routing scheme. In Proc. 21stAnn. ACM Symp. on Theory of Computing, pages 241{250, 1989. This paperpresents the �rst deterministic O(logN) permutation routing algorithm fora multibuttery network. A multibuttery network is a special instance of adelta network. Upfal also shows that P instances of the permutation problemcan be routed in O(logN + P ) steps using a pipelining approach.[UY91] J. D. Ullman and M. Yannakakis. High-probability parallel transitive closurealgorithms. SIAM Journal on Computing, 20(1):100{125, Feb 1991. Paralleltransitive closure algorithms are presented for the case when the graph issparse or only a single source information is desired. The algorithms presentedcan converted to the Las Vegas type.158
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[Val82] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal onComputing, 11(2):350{361, May 1982. Valiant gives a distributed randomizedalgorithm for routing packets from unique sources to unique destinations inan n-dimensional binary cube in O(logN) time, where N = 2n is the numberof nodes in the network, with high probability.[Val84a] L. G. Valiant. Short monotone formulae for the majority function. Journal ofAlgorithms, 5:363{366, 1984. A probabilistic approximation of a deterministicboolean function can yield simple circuits having a small proportion of inputsthat cause wrong outputs. Independent probabilistic approximations of thesame function can be combined to reduce the probability of error. In thispaper Valiant uses such a technique to obtain O(n5:3) size monotone formulasthat compute the majority function of n boolean variables.[Val84b] L. G. Valiant. A theory of the learnable. Communications of the ACM,27:1134{1142, 1984. Valiant introduces a formal framework for the probabilis-tic analysis of algorithms that learn sets de�ned on a predetermined universe.[Val87] D. Valois. Algorithmes probabilistes: une anthologie. Master's thesis,D�epartement d'informatique et de recherche op�erationnelle, Universit�e deMontr�eal, 1987. In French, this paper covers a number of probabilistic al-gorithms including matrix multiplication and inversion, manipulation of poly-nomials, set equality, Byzantine Generals, and cryptography.[Vaz87] U. V. Vazirani. E�ciency considerations in using semi-random sources. InProc. 19th Ann. ACM Symp. on Theory of Computing, pages 160{168, 1987.E�cient algorithms for using semi-random sources are presented.[VB81] L. Valiant and G. Brebner. Universal schemes for parallel communication.In Proc. 13th Ann. ACM Symp. on Theory of Computing, pages 263{277,1981. This paper extends Valiant's message routing algorithm [Val82] to asyn-chronous networks.[vdS81] J. L. A. van de Snepscheut. Synchronous communication between asyn-chronous components. Information Processing Letters, 13(3):127{130, Decem-ber 1981. Snepscheut presents a distributed algorithm for CSP output guardsin which processes are related by a tree structure. A probabilistic algorithmfor output guards is described in Section 3.2.159



www.manaraa.com

[VF90] J. S. Vitter and P. Flajolet. Average-case analysis of algorithms and data struc-tures. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,Volume A: Algorithms and Complexity, chapter 9, pages 432{524. Elsevierand The MIT Press (co-publishers), 1990. Vitter and Flajolet present ana-lytic methods for average-case analysis of algorithms, with special emphasison the main algorithms and data structures used for processing nonnumeri-cal data. Problems considered include sorting, searching, pattern matching,register allocation, tree compaction, retrieval of multidimensional data, ande�cient access to large �les stored on secondary memory. The main mathe-matical tools used include generating functions (for recursively de�ned struc-tures), statistics of inversion tables (for sorting algorithms), and valuationson combinatorial structures (for trees and structures with tree-like recursivedecomposition, such as plane trees, multidimensional search trees, quicksort,and algorithms for register allocation and tree compaction).[Vis84] U. Vishkin. Randomized speed-ups in parallel computation. In Proc. 16thAnn. ACM Symp. on Theory of Computing, pages 230{239, 1984. Vishkinconsiders the problem of computing the position of each element of a linkedlist, given the length n of the list. He presents a probabilistic algorithm forthis problem running time O(n=p + log n log �n) using p processors.[Vis90] S. Vishwanathan. Randomized online graph coloring. In Proc. 31st Ann.IEEE Symp. on Foundations of Computer Science, pages 464{469, 1990. Itshown that randomization helps in coloring a graph in an online manner andthe randomized online algorithm is quite competitive with the best-known,deterministic, o�-line algorithm.[VV85] U. V. Vazirani and V. V. Vazirani. Random polynomial time is equal to semi-random polynomial time. In Proc. 26th Ann. IEEE Symp. on Foundations ofComputer Science, pages 417{428, 1985. This paper analyzes of the behaviorof randomized algorithms where perfectly random sources are substituted withsources which have small bias and dependence. It shows that if a problem canbe solved by a polynomial-time Monte Carlo algorithm which has access toa true source of randomness, the the same problem can be solved using anarbitrarily weak semi-random source.160
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[VV89] U. V. Vazirani and V. V. Vazirani. The two-processor scheduling problem isin random NC. SIAM Journal on Computing, 18(6):1140{1148, 1989. An e�-cient, randomized, parallel solution to the well-studied two-processor schedul-ing problem is presented.[vzG89] J. von zur Gathen. Testing permutation polynomials. In Proc. 30th Ann. IEEESymp. on Foundations of Computer Science, pages 88{98, Research TrianglePark, NC, October 1989. IEEE Computer Society Press. The author presentsa randomized algorithm for testing whether a given polynomial over a �nite�eld with q elements is a permutation polynomial in expected O(q) time.[vzG91] J. von zur Gathen. Tests for permutation polynomials. SIAM Journal onComputing, 20(3):591{602, June 1991. An element of a �nite �eld Fq[x] iscalled a permutation polynomial if the mapping Fq ! Fq induced by it isbijective. A probabilistic algorithm for testing this property is given.[vzGS92] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoringpolynomials. In Proc. 24th Ann. ACM Symp. on Theory of Computing, pages97{105, Victoria, B.C., Canada, May 1992. A probabilistic algorithm for fac-toring univariate polynomials over �nite �elds is presented whose asymptoticrunning time improves upon previous results.[Wei78] B. W. Weide. Statistical Methods in Algorithmic Design and Analysis. PhDthesis, Computer Science Department, Carnegie-Mellon University, Pitts-burgh, PA, Report CMU-CS-78-142, 1978. An early survey of probabilisticalgorithms and analysis.[Wel83] D. J. A. Welsh. Randomized algorithms. Discrete Appl. Math., 5:133{146,1983. This is a well-written introduction to randomized algorithms. Welshdiscusses probabilistic algorithms for checking polynomial identities, primal-ity, matrix and polynomial multiplication, and deciding whether a graph hasa perfect matching. The work also contains a nice discussion on random poly-nomial time, random log-space, and the probabilistic hierarchy.[WVZT90] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. A linear-time proba-bilistic counting algorithm for database applications. ACM Trans. on DatabaseSystems, 15(2):208{229, Sept 1990. A probabilistic technique called linear161
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counting, based on hashing, for counting the number of unique values in thepresence of duplicates is presented in this paper.[Wyl79] J. C. Wyllie. The complexity of parallel computation. Technical Report TR 79-387, Department of Computer Science, Cornell University, Ithaca, NY, 1979.Wyllie conjectures that there is no optimal speed-up parallel algorithm forn= log n processors for the problem: Given a linked list of length n, computethe distance of each element of the linked list from the end of the list. However,Vishkin showed that such optimal speed-up can be obtained via randomization(see Section 4).[Yao79] A. C. Yao. The complexity of pattern matching for a random string. SIAMJournal on Computing, 8(3):368{387, August 1979. Yao proves that the mini-mum average number of characters which need be examined in a random stringof length n for locating patterns of length m, in an alphabet with q symbols,is �(dlogq(n�mlnm +2)e) if m � n � 2m and �( dlogqmem n) if n > 2m. This con�rmsKnuth, Morris, and Pratt's conjecture in [KMP77].[Yao83] A. C. Yao. Lower bounds by probabilistic arguments (extended abstract).In Proc. 24th Ann. IEEE Symp. on Foundations of Computer Science, pages420{428, 1983. Though not a paper on probabilistic algorithms, this paperillustrates the power of probabilistic arguments by proving lower bounds forthree important problems.[Yao91] A. C. Yao. Lower bounds to randomized algorithms for graph properties.Journal of Computer and System Sciences, 42:267{287, 1991. Yao shows that
(n(log n) 112 ) edges must be examined by any randomized algorithm (as op-posed to 
(n2) by any deterministic algorithm) for determining any non-trivialmonotone graph property. An earlier version of this paper appeared in Proc.28th Ann. IEEE Symp. on Foundations of Computer Science, 1987.[YL91] M. Yannakakis and D. Lee. Testing �nite state machines (extended abstract).In Proc. 23rd Ann. ACM Symp. on Theory of Computing, pages 476{485,New Orleans, LA, May 1991. A checking sequence for a �nite state machineA having n states is an input sequence that distinguishes A from all othermachines with n states. In addition to some other results on testing �nitestate machines, the authors present a simple randomized polynomial timealgorithm that constructs with high probability a checking sequence of length162
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O(pn4 log n), where p is the size of the input alphabet. (There is a lower boundof pn3 on the length of checking sequences; previous algorithms are exponentialin general or work only for special cases.).[Zac88] S. Zachos. Probabilistic quanti�ers and games. Journal of Computer andSystem Sciences, 36:433{451, 1988. This paper attempts to give a uniformpicture of the various polynomial time complexity classes.[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In ISSAC '79:Proc. Int'l. Symp. on Symbolic and Algebraic Computation, Lecture Notes inComputer Science, Vol. 72. Springer-Verlag, 1979. Zippel discusses proba-bilistic methods for testing polynomial identities and properties of systems ofpolynomials.[Zuc90] D. Zuckerman. General weak random sources. In Proc. 31st Ann. IEEE Symp.on Foundations of Computer Science, pages 534{543, 1990. A pseudo-randomgenerator that depends only on a weak random source is exhibited. By a weakrandom source it is meant that the source is asked only once for R random bitsand the source outputs an R-bit string such that no string has a probabilitymore than 2��R of being output, for some �xed � > 0. This paper showshow to simulate RP using a string from a �-source in time nO(logn), or inpolynomial time under the Generalized Paley Graph Conjecture. See [Zuc91]for a correction to a result in this paper.[Zuc91] D. Zuckerman. Simulating BPP using a general weak random source. In Proc.32nd Ann. IEEE Symp. on Foundations of Computer Science, pages 79{89,1991. Using the weak random source de�ned in [Zuc90], this paper shows howto simulate BPP and approximation algorithms in polynomial time using theoutput from a such a source.
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