On Randomization in
Sequential and Distributed Algorithms

Rajiv Gupta Scott A. Smolka! Shaji Bhaskar

GE Corporate R&D Dept. of Computer Science Bell Northern Research
KW-C313, P.O. Box 8 SUNY at Stony Brook 35 Davis Drive
Schenectady, NY 12301 Stony Brook, NY 11794 Res. Triangle Pk, NC 27709

gupta@crd.ge.com sas@cs.sunysb.edu bhaskar@bnr.ca

September 8, 1993

I returned, and saw under the sun, that the race is not to the swift, nor the battle to the
strong, neither yet bread to the wise, nor yet riches to men of understanding, nor yet favor

to men of skill; but time and chance happeneth to them all.
FEcclesiastes (King James Version)

Chaos umpire sits,
And by decision more embroils the fray
By which he reigns: next him high arbiter

Chance governs all.

Paradise Lost, John Milton

!Research supported by the National Science Foundation under grants CCR-8704309, CCR-9120995, and
CCR-9208585;and-bysthesAir-Force Office of Special Research under grant AFOSR F49620-93-1-0250DEF.

www.manaraa.com

Contents

1 Introduction

1.1 Probabilistic Techniques

1.2 Tradeoffs

2 Sequential Randomized Algorithms

2.1 The Sock Selection Problem

2.2 Primality Testing

2.3 Networks without Large Hierarchies

2.4 Probabilistic Hashing
2.4.1 Perfect Hashing
2.4.2 Universal Hashing
2.4.3 Some Recent Results

2.5 The Nearest Neighbors Problem

2.6 Interactive Probabilistic Proofs

3 Distributed Randomized Algorithms

3.1 The Dining Philosophers Problem
3.2 Communication Guard Scheduling
3.3 Leader Election
3.4 Message Routing

3.5 Byzantine Agreement

4 Additional Topics of Interest and Conclusions

www.manaraa.com

Abstract

Probabilistic, or randomized, algorithms are fast becoming as commonplace as con-
ventional deterministic algorithms. This survey presents five techniques that have
been widely used in the design of randomized algorithms. These techniques are il-
lustrated using 12 randomized algorithms — both sequential and distributed — that
span a wide range of applications, including: primality testing (a classical problem in
number theory), universal hashing (choosing the hash function dynamically and at ran-
dom), interactive probabilistic proof systems (a new method of program testing), dining
philosophers (a classical problem in distributed computing), and Byzantine agreement
(reaching agreement in the presence of malicious processors). Included with each al-
gorithm is a discussion of its correctness and its computational complexity. Several
related topics of interest are also addressed, including the theory of probabilistic au-
tomata, probabilistic analysis of conventional algorithms, deterministic amplification,
and derandomization of randomized algorithms. Finally, a comprehensive annotated

bibliography is given.

Categories and Subject Descriptors: 1.1.2 [Computing Methodologies]: Algorithms;
F.1.2 [Computation by Abstract Devices]: Modes of Computation - Probabilistic

Computation; D.1 [Software]: Programming Techniques.

General Terms: Randomized Algorithms; Probabilistic Techniques; Analysis of Algo-

rithms.

Additional Keywords and Phrases: Probabilistic Algorithms; Sequential and Distributed
Algorithms; Computational Complexity; Randomized Quicksort; Primality Testing;
Transitive Tournaments; Hashing; Perfect Hashing; Universal Hashing; Nearest Neigh-
bors Problem; Interactive Probabilistic Proof Systems; Graph Isomorphism; Dining

Philosophers Problem; CSP; Leader Election; Message Routing; Byzantine Agreement.

www.manaraa.com

1 Introduction

We examine the field of probabilistic algorithms, that is, algorithms containing statements
of the form:

¢ := outcome of tossing a fair coin

Probabilistic algorithms typically toss coins in order to make multi-way decisions so, in
general, the coins in question are n-sided. One of the goals of this survey is to illustrate the

interesting and powerful effects coin tossing can have on the behavior of algorithms.

The action of tossing a coin is often implicit in a probabilistic algorithm and may take
on various guises. Actions such as “randomly select an item z from a set S”, or “randomly
choose a process with which to communicate” are typical examples. Computationally, tossing
a coin can be viewed as generating a random number between 1 and n. As such, the term
randomized algorithm is often used in the literature as a synonym for probabilistic algorithm,
and so it shall be here. An algorithm not having any coin tossing statements is said to be

deterministic.

Randomized algorithms entered the computer science spotlight with the publication of
Michael Rabin’s seminal paper “Probabilistic Algorithms” [Rab76], although their existence
can be traced back much further [Sha92a]. Rabin’s paper presented surprisingly efficient
randomized algorithms for two well-known problems, Nearest Neighbors—a problem in com-
putational geometry, and Primality Testing—the problem of determining whether a given
integer is divisible by any number other than itself and one. The probabilistic algorithm
of Solovay and Strassen [SS77, SS78], also for primality testing, is another celebrated result
in the field. A resurgence of interest in randomized algorithms occurred in the early 1980’s

with the discovery of the important role randomization can play in distributed computing,

e.g., [FR80, LR81, BOS3).

More recently, randomized algorithms have been the subject of an ACM Turing Award
Lecture [Kar86], an ACM Distinguished Dissertation [Kil90], and of a number of surveys
including [Wei78, Hop81, Wel83, Kro85, MSV85, Har87, Val87, BB88, Rag90, Kar90|. Our
survey is closest in spirit to [Har87, Val87, BB88, Kar90] in its extensive coverage of both

sequential and distributed randomized algorithms.

www.manaraa.com

A distinguishing aspect of our survey is the classification we present in Section 1.1 of gen-
eral techniques used in the design of randomized algorithms.? In Section 1.2, we then identify
certain tradeoffs one may encounter in using these techniques. For example, the Primality
Testing algorithm of [Rab76], which uses a technique we call “random search”, outperforms
all known deterministic algorithms for the problem, yet cannot, in general, guarantee abso-
lutely that the answer produced is correct. We next present 12 randomized algorithms which
we believe to be representative of the field; in the least, they collectively make use of the
techniques that we have presented. Seven of these algorithms are sequential (Section 2) and
five are distributed (Section 3). Finally, in Section 4, we spotlight several remaining issues

in the field of randomized algorithms. A comprehensive annotated bibliography is included.

The intended audience is one with a basic background in algorithm design and analysis,
but not necessarily familiar with the use of probabilistic techniques in algorithm construction.
Familiarity with an imperative, sequential programming language such as Pascal is assumed,
as the algorithms are presented in pseudo code with a distinctive Pascal flavor. The pseudo
code makes use of control constructs such as REPEAT UNTIL, FOR, WHILE, and IF THEN
ELSE for the sequential algorithms. For the distributed case, message passing constructs SEND
and RECEIVE, as well as constructs for shared memory access, are added to the language.

Their semantics are discussed in the introduction to Section 3.

As previously mentioned, we survey both sequential and distributed randomized algo-

rithms. In the sequential case, we examine:

1. Sock Selection (SockSel)

2. Primality Testing (PrimeTest)

3. Networks without Large Hierarchies (NetHierarchy)
4. Perfect Hashing (PerfHash)

5. Universal Hashing (UnivHash)

6. Nearest Neighbors (NearNeb)

7. Graph Isomorphism Program Testing (GI-Verify)

2Karp’s-recent-and excellent.survey [Kar90] contains a slightly different classification.

www.manaraa.com

The distributed randomized algorithms we consider are:

1. Dining Philosophers (DinPhil)
2. Communication Guard Scheduling (CommGuard)

3. Leader Election in a Ring (LeadElect)
4. Message Routing in a Network (MsgRoute)

5. Byzantine Agreement (ByzAgree)

For each algorithm we briefly define the basic problem and, when appropriate, the model
of computation. We then explain why each algorithm is correct, and examine its computa-
tional complexity. Only a limited amount of probability theory is required to understand
the correctness and complexity analyses, as our emphasis is on illustrating the techniques

involved rather than on providing formal proofs.

To be able to cogently discuss the computational complexity of randomized algorithms,
it is useful to first introduce several criteria for evaluating the performance of algorithms.
Let A be a sequential algorithm with input I and output O. If A is deterministic, than an
oft-used yardstick of A’s performance is its average running time: the average time taken by
A when, for input I of a given size, each possible instance of I is considered equally likely.

That is, a uniform distribution on inputs is assumed.

For A a randomized algorithm, its running time on a fized instance ¢ of I may vary from
execution to execution. Therefore, a more natural measure of performance is the ezpected
running time of A on a fized instance ¢ of I: the mean time taken by A to solve instance ¢

over and over.

In the randomized case, it is also useful to talk about the running time of .4 with high
probability or the running time of A that occurs almost surely. Let T'(n) be a bound on
the running time of A on inputs of size n. The running time of A is said to be T(n)
with high probability if A terminates in time T'(n) with probability at least 1 — 1/n. The
running time of A is said to be almost surely T(n) if the algorithm terminates in time
T(n) with probability at least 1 — 1/2"°, for some constant ¢ > 0. In this survey, we have
opted, whenever possible, to give the exact expression for the termination probability of a
randomized algorithm instead of using qualitative terms such as “with high probability” or

“almost _surely.”

www.manaraa.com

These performance criteria can be applied to distributed algorithms as well. In this case,
the quantities of interest include communication complexity, the total number and size of
messages transmitted during the execution of a distributed algorithm; queueing delay, the
total time spent by messages in message queues waiting to traverse in-use communication

links; and the total number of accesses to shared variables/resources.

1.1 Probabilistic Techniques

We now discuss a number of fundamental techniques used by designers of randomized algo-
rithms. This list is not meant to be exhaustive, and the techniques considered overlap in the

sense that more than one may apply to a given randomized algorithm.

Input Randomization—Consider an algorithm A with input I and output O. As discussed
above, if we fix the size of I, then the average running time of A refers to the average
time taken by the algorithm when each possible instance of I is considered equally likely.
That is, a uniform distribution on inputs is assumed. However, this may not be the actual
input distribution to which the algorithm is exposed, making the average time complexity
misleading. On the other hand, the ezpected running time of A on instance ¢ of I refers to

the mean time that the algorithm would take to solve instance ¢ over and over.

Input randomization, i.e., rearranging or permuting the input to rid it of any existing
patterns, ensures that for all inputs, the expected running time matches the average running
time. This technique can be effective on problems that have algorithms with good average

running time but poor worst-case running time due to some unfavorable input patterns.

A well-known example of this technique is randomized quicksort [Knu73]. Quicksort
performs very well if the list of numbers to be sorted has a random order to it. However,
quicksort degenerates to a comparison of every number with every other number if the input
is already nearly sorted. One can think of randomized quicksort as a two step procedure. In
the first step, the input sequence to be sorted is randomly permuted. The usual quicksort
algorithm is then applied to the resulting sequence. Although the input randomization step
can be performed in linear time, in practice, it is usually more efficient to simply pick the
pivot element randomly. Our sock selection problem (SockSel) is another illustration of the

power of input randomization.

www.manaraa.com

An interesting application of input randomization is seen in some probabilistic interactive
proof-systems. Here a prover, which supposedly can solve a hard problem, tries to convince a
skeptical verifier of its prowess. For some problems, the verifier’s task essentially consists of
randomizing the input to the prover. This constitutes an attempt by the verifier to confuse
the prover about the specific problem instance it is being asked to work on. In Section 2.6,
we will see this use of input randomization in action for verifying the correctness of any
program that purportedly solves the graph isomorphism problem. The proof system will
have the additional feature that the prover can convince the verifier of its isomorphism-
checking prowess without the verifier having to solve the graph isomorphism problem in any

S€Ense.

Input randomization is not restricted to sequential algorithms. Some randomized mes-
sage routing algorithms, e.g., Valiant’s algorithm for hypercubes [Val82] and Aleluinas’s
algorithm for b-way shuffle networks [Ale82], exhibit what may be termed distributed input
randomization. In the message routing problem, a set of messages must be routed from
source nodes to destination nodes in a network of computers. Moreover, the routing must
be done in a distributed manner, i.e., without the help of a central arbiter. In the algo-
rithms of [Val82, Ale82|, each message is first sent to a randomly chosen intermediate node
before being transmitted to its final destination. This randomization step eliminates “hot
points” by distributing the traffic uniformly over the network. That is, it rids the input of
any patterns that may exist between source nodes and destination nodes. In Section 3.4, we
describe the message routing algorithms of Valiant and Aleluinas as well as a technique for

multi-butterfly networks based on randomizing the interconnections between nodes.

Random Search—Random search is one of the most widely used probabilistic techniques.
Many problems naturally involve searching a large space for an element having a desired
property. If the property in question is easily verified and the elements possessing it are

abundant, random search can be very effective.

Consider, for example, the problem of verifying the polynomial identity
f(Xl,X2, P ,Xn) — 0

If f is identically zero, then for all assignments of the X;’s it will evaluate to zero. However,
if f is non-zero, then it can be shown that for any suitably constructed set of inputs, f
will possess only a bounded number of zeros. In particular, if S is a set with more than

emdeg(f relementsdfromythe field generated by the coeflicients of f, then f can have at most

www.manaraa.com

|Tn zeros in S, for some constant ¢ [Sch79]. Thus every trial evaluation of f on a randomly
picked element of S™ will either prove the falsity of the identity, or yield credence to it with
1/c as the probability of being wrong. In k trials, therefore, one can either disprove the
identity or come to believe it to be true with error probability less than 1/c*, a number
that can be easily made smaller than the probability of a stray a-particle disrupting the
computation. Randomized algorithms for testing polynomial identities and properties of

systems of polynomials are discussed in detail in [Sch79, Zip79].

The probabilistic test for polynomial identities can also be used for determining whether
a given undirected graph G(V, E) has a perfect matching, i.e., a set of edges that covers each
vertex exactly once. To see this, let V = {1,2,...n} be the vertex set and associate variable
z;; with edge e;; € E. Define the n X n matrix B = [b;;] as follows. If there is no edge
between vertex ¢ and vertex j them b;; = 0. Otherwise, b;; = z;; if ¢ > 7 and b;; = —;;
if ¢ < j. Tutte [Tut47] proved that G has a perfect matching if and only if det(B) is not
identically equal to zero. It was first observed by Lévasz [Lov79] that since det(B) is a
polynomial in the z;;’s, one can test for the validity of the polynomial identity det(B) = 0
using the probabilistic technique described above. Lévasz, in the same paper, also describes

a probabilistic method for determining the actual perfect matching, if one exists.

More efficient sequential methods for computing the perfect matching, though consid-
erably more complicated, have been described in the literature. The beauty of the above
scheme is its simplicity. In addition, it can be efliciently parallelized: the parallel imple-
mentation has the same resource requirements as those for evaluating a determinant, viz.,
O(log® n) time using O(n%°) processors [KUWS86, MVV87]. This is significant as perfect
matching is a fundamental problem that is not known to be in NC, the class of problems
having parallel algorithms that run in polylog time while using a polynomially bounded num-
ber of processors. The randomized parallel algorithms of [KUWS86, MVV87] do, however,
place perfect matching in Random NC. One can also determine the actual perfect matching

in parallel; see [KUWS86, MVV87] for details.

Random search has also been used in algorithms on finite fields [Rab80b, Ber70]. It can be
shown (e.g., see [Ber70]) that one in about every n polynomials in Z,[z] (the field of residues
(mod p), where p is prime) is an irreducible monic polynomial of degree n. This result
has been reproved, using a different technique, in [Rab80b]. Thus a plausible algorithm
for finding an irreducible polynomial is to repeatedly pick one at random and test it for
irreducibility. Since it takes O(n*(logn)?loglognlog p) steps to test for irreducibility, one

can find an irreducible polynomial in a reasonable amount of time. Algorithms for finding

www.manaraa.com

roots and irreducible factors based on random search are also given in [Rab80b].

There is a long history in number theory of using random search. For example, the
result that 1 out of n polynomials of degree n over a finite field is irreducible, used above
to derive a randomized algorithm for finding an irreducible polynomial, was published in
1856 by Richard Dedekind [J. Reine Angew. Math.]. Evidence exists that Gauss knew this
result for the integers (mod p). Even earlier, Galois noted that a good way to select an
irreducible polynomial over a finite field was by trial. Similarly, a paper by Pocklington
[Proc. Cambridge Phil. Soc., 1917] on computing square roots mod p gives an estimate of

the probability that a random search will succeed and take no more than cubic time.

In this survey, the algorithms we present for primality testing (PrimeTest) and perfect

hashing (PerfHash) also use random search.

An implicit prerequisite for effective random search is the ability to randomly pick an
element, more or less uniformly, from the space under consideration; e.g., the space of “wit-
nesses” having a certain property, the space of spanning trees of a graph, or the space of
degree-n polynomials. Determining the spaces for which this is possible is in itself an inter-
esting problem. For example, it is not immediately clear how one would pick one spanning
tree, uniformly at random, from the space of all possible spanning trees of a connected,
undirected graph. This particular problem was solved by Broder [Bro89] who presented
a randomized algorithm with an expected running time of O(nlogn) per generated tree
for almost all graphs. In the worst case, the algorithm requires O(n®) time per generated
tree. Babai [Bab91l] presents a randomized algorithm that constructs an efficient nearly
uniform random generator for finite groups in a very general setting. Other interesting

work on the random generation of combinatorial structures and sample spaces can be found

in [JVV86, AGHP90].

Not all algorithms based on random search contain a verification step. If the search space
is teeming with elements possessing the desired property, one can even dispense with check-
ing the property. This is particularly useful if the property in question is not easily checked.
For example, the problem NetHierarchy calls for constructing a network (a complete directed
graph) on n nodes that does not contain a hierarchy on any subset of m nodes. A hierarchy,
also known as a transitive tournament [ES74], is a graph in which for all nodes z, y and
z, if the directed edges (z,y) and (y, z) exist then the edge (z,z) also exists. We will see
that with high probability, any randomly selected network on n nodes will be devoid of large

hierarchies as long as m is sufficiently “large”.

10

www.manaraa.com

Control Randomization—Consider a problem for which many algorithms exist, such as
sorting. If each of these algorithms has good expected performance for some problem in-
stances but poor worst-case performance, it is very risky to use any single one of them. This
is especially true if the input probability distribution is not known. It may happen that the
input is biased in such a way that it favors the bad cases. In such a situation, good average
performance, which is typically computed assuming uniform input distribution, does not
guarantee much. A way around this problem is to randomly pick one of the algorithms for
each input instance. This strategy assumes, of course, that there is no significant correlation

among the algorithms on what constitutes the bad inputs.

The randomized string matching algorithm of Karp and Rabin [KR87] exemplifies the use
of control randomization. Here the problem is to determine if a given pattern of m symbols
occurs in a text of length n. A naive algorithm would compare the pattern to the substrings at
all possible text locations resulting in O(nm) time complexity. Karp and Rabin do better by
using a fingerprinting function that associates an integer with a text string using arithmetic
calculations modulo a given prime number. They need only compare the fingerprint of the
pattern to the fingerprints of all possible text locations. Control randomization comes into
play as the fingerprinting function, actually the prime number underlying the fingerprinting

function, is chosen at random.

Although the worst case running time of their algorithm is O((n — m + 1)m), like the
naive algorithm, in practice one can expect it to run in time O(n + m).*> There is, however,
a small probability (%, where ¢ is the prime number used in the fingerprinting function)
that the algorithm detects a false or spurious match. As a result, the algorithm incurs the

additional overhead needed to check that detected matches are actually valid.

It is worth noting that a competitive alternative to the Karp-Rabin algorithm is the
deterministic Knuth-Morris-Pratt algorithm [KMP77] which runs in time O(n + m). The
main novel idea behind this algorithm is the calculation of the prefiz function, which for a

given pattern encapsulates knowledge about how the pattern matches against shifts of itself.

As we will see, the problem of universal hashing (UnivHash) also admits a solution based

on control randomization.

8The worst case behavior manifests itself in the presence of O(n) occurrences of the pattern in the text. A
more realistic, constant number of occurrences of the pattern within the text leads to the O(n + m) running

time cited above.

11

www.manaraa.com

Random Sampling—Sometimes it is possible to ascertain, with high probability, certain
properties of a set S from a randomly chosen subset of S. This technique is usually called
“random sampling.” As a simple example, consider a set S of n real numbers, and a randomly
chosen subset R of S of size r [CS89]. R contains a lot of information about S. For example,
if we let S5 be the subset of numbers in S that are greater than the maximum value in
R, then the expected size of S is O(n/r). Thus the size of S, diminishes as more and

more values from S are sampled. Similarly, the expected size of the corresponding set S. is

O(n/r).

As another example of random sampling, consider the problem of numerically computing

the integral
b
I :/ f(w)dw7

using Monte Carlo integration (not to be confused with Monte Carlo algorithms discussed
in Section 1.2). Assuming that f(z) is bounded by ¢, for @ < @ < b, this is accomplished by
first randomly choosing a set of points that lie within the rectangle €2 given by

Q={(z,y)]a<z<b0<y<c}

Next, assuming that our random sample contains N points, determine the number Ny of
these points (the “hit points”) that lie beneath the curve. Then the desired integral I, which
is equal to the area under the curve within the bounding rectangle 2, is approximated by
N

I ~ ¢(b— a)TH,
i.e., the fraction of hit points in our random sample multiplied by the area of 2 (see Figure 1).
The error in the computation depends on the number of points chosen. The larger the
random sample, the less likely it is that the computed area differs significantly from the

correct answer.

Note that for the computation of ordinary integrals with “well behaved” integrands, one
is better off efficiency-wise and accuracy-wise using traditional numerical techniques such
as the trapezoidal and Simpson’s rules. Monte Carlo integration becomes attractive if the

function fails to be regular which is often the case for multidimensional integrals [Rub81].

A more involved use of random sampling will be seen in Rabin’s [Rab76] algorithm for
the nearest neighbors problem (NearNeb). Here the distance § separating the closest pair of

pointspingaygivenysetpSsrissdeduced from a random subset of S containing ns of the points.

12

www.manaraa.com

miss

f
® hit
[]

y

Figure 1: Graphical depiction of Monte Carlo integration from [Rub81]: Q is the bounding
rectangle; I, the desired integral, is the area under the curve; sample points above the curve

are misses and those below are hits.

The expected running time of this algorithm is better than any known deterministic algo-

rithm, under certain reasonable assumptions.

Symmetry Breaking—There are certain problems in distributed computing, in partic-
ular, problems in which processes must reach some sort of agreement, that do not have
deterministic solutions. This dilemma surfaces when processes behave in a deterministic and
identical fashion, without making any concessions toward the goal of reaching agreement.
By introducing randomization into the behavior of the processes themselves, these patterns

of identical or “symmetric” behavior can be broken, thereby leading to agreement.

For example consider the “narrow door” problem in which two people are trying to exit a
room through a door that at most one person can squeeze through at a time. If both persons
react to a collision at the door by backing up two feet and retrying after five seconds, then
an initial collision could conceivably result in a never-ending succession of collisions, with
neither party ever succeeding in leaving the room. A distributed algorithm that guarantees
with probability 1 that someone will eventually be able to leave the room would require each

participant to wait a randomly distributed amount of time after each collision before trying

13

www.manaraa.com

again. This essentially describes the hardware protocol for the Ethernet. Other examples
of symmetry breaking include the dining philosophers problem (DinPhil), communication
guard scheduling (CommGuard), and leader election (LeadFElect).

1.2 Tradeoffs

Tradeoffs are often involved in the use of randomized algorithms. Benefits to be reaped
by introducing randomization into algorithms include, in the sequential case, reductions in
time complexity (e.g., PrimeTest, SockSel, and NearNeb) and in space complexity (e.g.,
PerfHash).

In the distributed case, reductions in communication complexity (e.g., ByzAgree) and
queueing delay (e.g., MsgRoute) can be obtained, and an algorithm’s resiliency to faults can
be improved (e.g., MsgRoute). Perhaps an even more fundamental benefit of randomization
in the distributed setting is the ability to solve problems that have no deterministic solutions

(e.g., DinPhil, CommGuard, and LeadFlect).

In addition to these gains, a randomized algorithm is almost always simpler to understand
and easier to implement than its deterministic counterpart. This is perhaps best illustrated
by Loévasz’s probabilistic algorithm for perfect matching discussed earlier. As we will see,
conceptual elegance and simplicity are a hallmark of all the randomized algorithms treated
in this survey. In an age of rising software complexity and cost, the simplicity of randomized

algorithms will be a key determining factor in their acceptance by the software community.

To profit from the use of randomization, one must often sacrifice the traditional notion
of absolute program correctness for a notion of “correct with probability 1 — e¢.” For the
distributed algorithms DinPhil, CommGuard, and ByzAgree the € is zero, so we have even-
tual agreement with probability 1. In other cases, such as PrimeTest, the € can be made
exponentially small in the length of the input by iterating the algorithm some number of
times. The beauty of these algorithms is that usually only a small number of iterations are

required to establish a very high degree of confidence in their output.

Another potential problem with randomized algorithms is that sometimes there is a
small probability of taking an inordinate amount of time to execute (e.g., NearNeb) or of
even failing to halt (e.g., LeadFElect).

Analogous to the space-time tradeoff inherent to deterministic sequential algorithms, with

14

www.manaraa.com

randomized algorithms, there is a tradeoff involving resource requirements and absolute
correctness. In fact, this tradeoff has led to the distinction of two types of randomized
algorithms: Monte Carlo algorithms are always fast and probably correct, whereas Las Vegas
algorithms are probably fast and, upon termination, always correct. Las Vegas algorithms,
however, may fail to terminate for some inputs. For example, the algorithm for primality
testing (PrimeTest) is of the Monte Carlo variety, while the algorithm for nearest neighbors
(NearNeb) is of the Las Vegas variety.

If a purported solution to a problem is easily verifiable then a Monte Carlo algorithm
MC for it can be converted into a Las Vegas algorithm by simply repeating MC till a correct
solution is found. Similarly, any Las Vegas algorithm LV can be trivially converted into a
Monte Carlo algorithm: one can always return a wrong answer (efficiently!) if LV seems to
be taking too long. Since LV is fast with high probability, the modified algorithm will be
correct with high probability.

The Karp-Rabin string matching algorithm described above is a good example of how
to convert a Monte Carlo algorithm into a Las Vegas algorithm: the kernel of the Karp-
Rabin algorithm will, from time to time, report spurious matches. By first checking if a
purported match is a valid match, the Karp-Rabin algorithm always gives a correct answer.

Muthukrishnan [Mut93] gives an efficient parallel algorithm for exactly this problem.

In [BB88], Las Vegas algorithms possessing bounded time requirements are called Sher-
wood algorithms. Randomized quicksort is an example of a Sherwood algorithm. It takes
at most O(n?) time on any problem instance. Note that a Las Vegas algorithm that may

possibly not terminate (e.g., LeadFElect), cannot be a Sherwood algorithm.

2 Sequential Randomized Algorithms

In the first part of this survey, we present seven sequential randomized algorithms. The first
algorithm (SockSel) is a simple illustration of the input randomization technique. The next
three algorithms (PrimeTest, NetHierarchy, and PerfHash) illustrate the power of random
search. We then give an example of control strategy randomization (UnivHash). We conclude

this section with a randomized algorithm that uses random sampling (NearNeb).

15

www.manaraa.com

2.1 The Sock Selection Problem

In this section, we provide a randomized solution to the Sock Selection problem (SockSel).
This problem, although somewhat contrived, illustrates the technique of input randomization

in a simple manner. It also bears connections with certain resource allocation problems.

Consider a dresser drawer of 2n socks, half of which are red and half of which are blue.
Person X has just awoken and is in dire need of a matching pair of socks; a matching pair of
either color will do. In his elusive search for this holy grail, person X randomly extracts a
sock at a time from the drawer, and may also throw socks away (one at a time) if he believes
he has no use for them. He is not allowed to put a sock back in the drawer. The question
is, then: How many socks need person X remove from the drawer before a matching pair is

obtained?

If there is no limit to the number of socks person X can have in his possession at any
one time, then the problem is trivial. He simply removes three socks from the drawer and
discards the sock that is not needed. Since two socks out of three must be the same color,

this procedure will terminate in constant time.

The problem becomes more interesting if person X can have in his possession at most
two socks at any one time, and this is the sock selection problem we study. The simplest
deterministic solution, which is basically a sequential search through the sequence of socks

extracted from the drawer, is as follows.

SockSell { (* First Try at Sock Selection *)

sl :

get-sock()
s2 :

get-sock()

WHILE color-of(s1l) <> color-of(s2) DO {
discard-sock(s2)

s2 := get-sock()

} (* end while *)

It is not difficult to see that in the worst case this algorithm will take O(n) time. The
worst case behavior is manifest when the sequence of socks returned by get-sock() is either

redypbluesbluesmaapbluegredor blue, red, red, . . ., red, blue, where the number of intervening

16

www.manaraa.com

socks of opposite color is O(n). In fact we can make a stronger statement: any deterministic

algorithm will have O(n) worst case running time.

The above “worst case” sequences of socks returned by get-sock() capture the drawer
in an adversarial role with respect to person X. For most of the sequences returned by
get-sock(), however, the while-loop will terminate before n steps. Thus it is reasonable to
anticipate that the average running time of SockSell is much less than O(n). This suggests

the randomized algorithm SockSel2, an improved version of SockSel? .

SockSel2 { (* Revised Sock Selection Algorithm *)
sl := get-sock()
s2 := get-sock()
WHILE color-of(s1l) <> color-of(s2) DO {
toss a perfect two-sided coin
IF heads THEN {
discard-sock(sl)
sl := get-sock()}
ELSE {
discard-sock(s2)
s2 := get-sock()}

} (* end while *)

Here we assume that the drawer does not know the random choices made by SockSel2,
i.e., the coin tosses are private.* This assumption is critical for, without it, the drawer can
force SockSel2 into long O(n)-step executions. Even worse, if the coin tosses are public, an
adversarial drawer can force person X to end up with a mismatching pair of socks after the

drawer has been emptied.

The way SockSel2 is formulated above, the latter problem does not completely go away

even when the coin tosses are hidden from the drawer: with probability that is exponentially

“For a discussion of private vs. public coin tosses, see the last paragraph of Section 2.6 and [GS89].
A related concept called shared randomness, which is weaker than both private and public coin tosses, is

discussed in [BDMP91].

17

www.manaraa.com

small in n, SockSel2 can return a mismatched pair of socks. SockSel2 can be made foolproof
by employing two counters, one for the number of red socks left in the drawer and one for
the number of blue socks left in the drawer. If it finds that it possesses the last sock of a
particular color, then it should immediately discard that sock. The next call to get-sock()

will return a matching sock.

Assuming SockSel2’s coin tosses are private, a viable strategy for the drawer is to have
get-sock() return socks of different colors on the first two calls and thereafter flip a perfect
two-sided coin to determine the color of the next sock to return. In this case, the probability
that the while-loop will be executed ¢ times is (1/2), 3 > 1, and, thus, the probability that
get-sock() is called exactly (i + 2) times is (1/2)'. The expected running time, for large n,

is given by

i=n

S+ 2)(1/2) ~ 4. (1)

=1

Notice that the running time of SockSell averaged over all sequences returned by get-sock()
is 4, the same as the expected running time of SockSel2 for any input sequence. The following

properties can thus be ascribed to problems amenable to solution by input randomization:

1. The problem should have a deterministic algorithm with good average running time.

2. The random transformation applied to the input for achieving uniform running time

for all the inputs should take less time than the algorithm itself.

The problem of primality testing considered next illustrates another technique for ran-

domized algorithms: random search.

2.2 Primality Testing

The problem of primality testing is, Given a positive integer n expressed in binary notation,
is n a prime number? Recall that a number n is prime if the only numbers by which it is

divisible are 1 and itself; otherwise, n is said to be composite.

Since the dawn of number theory, prime numbers have enjoyed considerable attention.
Despite all the progress in the field, to date there is no formula (similar to, say, Fibonacci
numbers) to enumerate all the prime numbers. Fermat’s primes, some of which are actually

not _prime, and the ancient Chinese assertion that n is prime if and only if n divides 2" — 2,

18

www.manaraa.com

are wrong results which exemplify the mysteries enshrined in prime numbers. (For the latter,

consider, for example, n = 341.)

Of late extremely large prime numbers are in great demand because of their use in defin-
ing trap-door functions for public key cryptography systems [RSA78, Sch84, GM84, Smi83|.
For example, in the Rivest-Shamir-Adleman (or RSA) cryptosystem [RSA78| the keys are
200-digit numbers. An encryption key is the product of two secret primes, having approxi-
mately 100 digits each, which are known only to the creator of the key. The corresponding
decryption key is computed from the same two prime numbers using a publicly known algo-
rithm. Difficulty in factoring large numbers is at heart of this cryptosystem: it ensures that
one cannot easily deduce, in any reasonable amount of time, the prime numbers that went
into forming the publicly advertized encryption key. Clearly, large primes are essential to
this scheme. Using randomized search for testing whether a given number is prime — such

a test can be used for generating large prime numbers — is the subject of this section.

In the absence of a formula, a plausible strategy for generating large prime numbers

might be:

GenPrime{
REPEAT{
Pick a large number at random;
Test whether it is prime;}

UNTIL a prime number of desired size is found

The mean distance between primes in the neighborhood of a number n is O(log n) (see,
e.g., [Sch84]). Thus we do not have to test very many numbers before finding one in the
desired range. For example, in order to find a prime number about 10?° in size, we only have
to test about 48 numbers. The catch, however, is to test such large numbers for primality

in a moderate amount of time.

One might contemplate using trial division, or even Wilson’s theorem — which states
that a number n is prime if and only if n divides (n — 1)! + 1 without remainder — in order
to check for primality. Repeated trial divisions are clearly very inefficient because even if
one were to try divisions with only the prime numbers between 1 and n — notwithstanding

the fact that there is no formula for generating them — one still has to conduct O(n/log n)

19

www.manaraa.com

divisions. Since n is encoded in [log(n + 1)] bits, repeated divisions will take exponentially
long. Furthermore, the sight of the factorial should dispel any hope for success in using

Wilson’s theorem as a practical test for primality.

Another fundamental result from number theory also appears promising. Pierre de Fer-
mat, a French mathematician, showed that if a number n is prime then, for all z, n does
not divide z implies n divides "' — 1 [Sch84|. This result has become known as Fermat’s
theorem, not to be confused with his last theorem. The condition n divides "' — 1 can be

restated as "' =1 (mod n), which we refer to as Fermat’s congruence.

The contrapositive of Fermat’s theorem yields a technique for showing the compositeness
of a number n. That is, n can be proven composite if we can find an « such that n does not
divide = or "' — 1 (elementary properties of modular arithmetic allow the latter condition
to be verified without ever computing the number z"~' — 1). Let us call such z witnesses to
the compositeness of n. Note that a reasonable search space for z are the integers between

1 and n — 1, inclusively, as these are guaranteed not to be divisible by n.

The problem with using Fermat’s theorem, however, is that the converse of the theorem
does not hold and there therefore exist composite n bearing no witnesses to their compos-
iteness. Such n are known as the Carmichael numbers, the first three of which are 561,
1105, and 1729. Interestingly, as pointed out in [CLR90], Carmichael numbers are extremely
rare; there are, for example, only 255 of them less than 100,000,000. Furthermore, even if a
composite n possesses a witness z, i.e., it is not a Carmichael number, there is no obvious

way to locate .

One can also obtain a positive identification of composite numbers using the Lucas-
Lehmer heuristic [Leh27]: n is prime if and only if "' = 1 (mod n) and 27 # 1
(mod n), for each prime factor p of n — 1. In general, the prime factors of n — 1 may not be
known. However, this test can be used effectively if n = 2™ + 1 for some positive integer m,

a rather restricted subset of the integers.

Let n = IIi=7p* be the unique prime factorization of n. Define A(n) = lem{p}* " (p; —
1),...,pt" Y(pm — 1)}. It was shown by Carmichael [Carl2], of the Carmichael numbers
fame, that n satisfies Fermat’s congruence if and only if A(n) divides (n — 1). The reader
can verify that A(561) divides 560.

In light of above theorem, a plausible approach to testing primality — actually compos-
iteness, but for a deterministic algorithm that always terminates with the correct answer, it

does not matter — is as follows. Divide composite numbers into two categories according

20

www.manaraa.com

to whether A(n) divides, or does not divide, (n — 1). If A(n) does not divide (n — 1), then
by virtue of Carmichael’s result, one can use Fermat’s test. On the other hand, if A(n) does
divide (n — 1) a new test is necessary. If an attempt to place a number in either category

fails, it must be prime.

A variation of the above strategy was employed by G. Miller in a paper that has proven to
be very useful in primality testing [Mil76]. This paper defined the basic concepts that were
later used by Rabin to derive a probabilistic algorithm for primality testing. To arrive at his
algorithm for primality testing, Miller divided the composite numbers as suggested above.
However, instead of using Carmichael’s A-function, he used X'(n) = lem{(p;—1),...,(pn—1)}
to pare down the set of composite numbers that satisfy Fermat’s congruence. The following

is a simplified version of Miller’s algorithm. In this algorithm, f is a computable function.

PrimeTest (Miller) { (* a deterministic algorithm for primality testing *)
Input n
If n is a perfect power, say m®, output ‘composite’ and HALT
REPEAT FOR EACH z < f(n) {
(1) if z divides m, output ‘composite’ and HALT
(2) if 2" 1 #21 (modn), output ‘composite’ and HALT
1

(3) if there is an 7 such that “;= = m is integral,

and 1 < ged(2™ — 1,n) < n, output ‘composite’ and HALT

}

output ‘prime’ and HALT

Miller used the A’ function to characterize the class of composite numbers that satisfy
Fermat’s congruence. He proved that a function f can be defined such that, if n is composite,
then by testing conditions (1) through (3) repeatedly, for all z < f(n), the algorithm will
indeed identify n as composite. Furthermore, f(n) can be defined so that the above algorithm
terminates in O(n%) steps. Since n is given in [log(n 4 1)] bits, O(an) is still exponentially
long. Using the Extended Riemann Hypothesis (ERH), however, Miller proved that f can

be, defined so that a slightly, more complex version of the above algorithm terminates in

21

www.manaraa.com

O(n*loglog n) steps, where n = [log(n + 1)| denotes the length of the binary representation
of n. Thus, the primality of a number can be determined deterministically in polynomial

time assuming ERH.

Like before, let us call any number « between 1 and n for which at least one of conditions
(2) and (3) in the main body of the above algorithm is true a witness to the compositeness of
n. A key observation which makes randomized testing for primality feasible is that there is
an abundance of witnesses for compositeness. The probability that a number is composite,
and conditions (2) and (3) are not satisfied is very small. In fact, Rabin [Rab76] has shown
that more than half the values of z € {1,2,...,n— 1} satisfy (2) or (3) if » is indeed composite
(see, also, [CLR90], Theorem 33.38). Monier [Mon80] has subsequently strengthened this
result by showing that at least 3/4 of the = are witnesses. Even though Miller’s polynomial
time algorithm for testing primality requires the ERH, these results about the density of

witnesses holds in general and can be proved without recourse to this hypothesis.

Figure 2 illustrates the high density of witnesses to compositeness. The figure shows, for
each integer n in the range 10,000 to 12,000, the percentage of integers between 1 and n that
are witnesses to the compositeness of n. As can be seen, if the number is composite, then
the percentage of witnesses in this range of numbers is almost always more than 98%; for
only about 18 numbers out of 2000, the percentage of witnesses lies in the 85 to 98% range.
As is to be expected, for primes there are no witnesses, resulting in a sparse set of points

along y = 0.

Miller witnesses, in conjunction with Rabin’s result about their density, gives a rather

powerful primality testing algorithm:

PrimeTest (Rabin) { (¥ a probabilistic algorithm for primality testingx)
Input n
REPEAT » times{
(1) randomly pick an z between 1 and n
(2) if 2" ! #£1 (mod n), output ‘composite’ and HALT
(3) if there is an ¢ such that "—2_} =m is integral,

and 1 < ged(z™ —1,n) < n, output ‘composite’ and HALT

}

output ‘prime’ and HALT

22

www.manaraa.com

Distribution of witnesses to compositeness of n
120 T T T T T

100 ==

% of witnesses

0 I I I I I I I I
1 102 104 106 108 11 112 114 116 118 12

n x104

Figure 2: Percentage of witnesses to the compositeness of n in the range 10,000 to 12,000.

The points at y = 0 represent prime numbers.

23

www.manharaa.com

In the above algorithm, if either condition (2) or (3) is satisfied then n is composite. On
the other hand, if (2) and (3) are not satisfied by = then » may or may not be composite and
the procedure must be repeated. If r trials are used, the probability that n is composite and
not detected is less than 1/2". Therefore, with very few trials, one can either prove that a
number is composite or gain a high degree of confidence that it is prime. See also [BBC*88]
for some intriguing observations about the performance of Rabin’s primality test and about

its reliability when used to generate a random integer that is probably prime.

In the mid-seventies, another probabilistic primality testing algorithm was discovered by
Solovay and Strassen [SS77]. Some basic results in number theory are needed to describe
their algorithm. For any prime number n, one can define Z* = {1,...,n — 1}, a cyclic group
under multiplication mod n. The Legendre Symbol for any element z € Z*, denoted by (2),
is defined to be 1 or —1 depending on whether or not z is a perfect square (i.e., a quadratic
residue modulo n) of some other element in Z*. More precisely, (£) = 1if z = y* (mod n)

n

for some y € Z*, —1 otherwise.

If z is a perfect square, say z = y*> (mod n), then it is not difficult to see that 2" =
y"1) =1 (mod n). This leads to a fast way of computing the Legendre symbol. One can
extend these concepts to a general n which may or may not be prime. In this case, for any
number n, one can define Z* = {z|z € {1,...,n — 1}, and ged(z,n) = 1}. Once again, Z*
is a group under multiplication mod n. The Legendre symbol is generalized to the Jacob:
symbol: if n is prime, the Jacobi symbol equals the Legendre symbol; when n is composite,
the Jacobi symbol is defined to be the product of all the Legendre symbols corresponding to
the prime factors of n, i.e., if n = Ilp;, then () = II(%,).

In the algorithm by Solovay and Strassen, for z € {1,...,n — 1} to be a witness to

compositeness of n, either ged(z,n) > 1 or 2T (mod n) # (£). Their algorithm can be

stated as follows.

PrimeTest (Solovay-Strassen) { (* another algorithm for primality testing*)
Input n
REPEAT » times{

(1) randomly pick an z between 1 and n

24

www.manaraa.com

(2) if ged(z,n) > 1, output ‘composite’ and HALT
(3) if 2% (mod n) # (), output ‘composite’ and HALT

}

output ‘prime’ and HALT

Determining if z and n are relatively prime (e.g. by Euclid’s algorithm), computing 2"
(mod n), and the Jacobi symbol (£), can all be accomplished in logarithmic time. If n is
prime, then it follows from the fact that Z* is cyclic, that = (2) (mod n). Thus when

n

n is indeed prime, no z will qualify as a witness. When n is composite, Solovay and Strassen

showed that the set of false witnesses — the numbers in {1,...,n—1} that violate conditions
(n—1

(1) and (2), i.e., gcd(z,n) =1 and =z 2 = (2) (mod n) — forms a proper subgroup of Z7*.

Hence the cardinality of this set can be at most (n — 1)/2. Once again, using the properties
of quadratic residues modulo n, the witnesses for compositeness are defined in such a way
that they are both easily checkable and abundant.

An interesting comparison of the Miller-Rabin and Solovay-Strassen primality testing
algorithms is given in [Mon80], where it is shown that the former is always more efficient
than the latter. These two algorithms are of the Monte Carlo variety because when n is prime
they can report so only with a certain probabilistic measure of confidence; in particular, no
proof is provided that this is the case. Convincing somebody that a number is composite is
an easy task: one simply has to exhibit that it is a product of other two numbers. How can
one demonstrate that a number n is prime? Certainly it can be done by showing all possible
trial divisions, but that is not an efficient proof as it is exponentially long in the length of
n. It was shown by Pratt [Pra75], using the Lucas-Lehmer heuristic for primality testing,
that one can give a succinct proof for primeness of a number n in O(log n) lines. While it
is easy to verify such a proof, unfortunately, there is no known method for coming up with

the proof, or demonstrating the absence thereof, in polynomial time.

Other algorithms utilizing different number theoretic properties for defining witnesses for
compositeness and primality have also been discovered [Rab80a, Leh82, AH87, GK86, AHS88].
For example, Adleman and Huang [AH88| have devised a new algorithm that, instead of
deciding primality by the inability to demonstrate witnesses to compositeness, employs a
separate Monte Carlo test for primality. Thus, just like composite numbers, there exists a

randomypolynomial timegalgorithm for the set of prime numbers. The algorithm flip-flops

25

www.manaraa.com

between searching for witnesses to compositeness and witnesses to primality, eventually
finding one in polynomially bounded expected time. This algorithm, which is of the Las
Vegas variety, will never declare a composite number to be prime or vice versa. However, it

may not terminate in polynomial time for some inputs.

The next problem we consider, which concerns the notion of transitive tournament due
to Erdés and Spencer [ES74], again illustrates random search. In this case, however, the
sample space is so abundant with good points that the “checking” step inherent to primality

testing can be dispensed with.

2.3 Networks without Large Hierarchies

Long ago, in a place called Confusion Land, there reigned an incompetent king called Nadir.
Nadir had appointed 1000 ministers, generals, and other high-ranking officials to various
portfolios in his kingdom. As usual, Nadir was afraid that some of his appointees would
organize, revolt, and finally usurp the throne. His remedy was simple: keep them confused.
He did this by not allowing a clear-cut line of command—a hierarchy—to be formed among
these officials. His long experience in politics had convinced him that even if as few as 25

officials got organized they would overthrow him.

Nadir’s definition of “being organized” is as follows: k officials are said to be organized
in a hierarchy if for every three of them, the “is-a-boss-of” relation is transitive. That is, if
for all triples of the form (A, B,C), if A is a boss of B and B is a boss of C' implies A is a
boss of C, then the k officials are organized.

Having made appointments to the 1000 positions, Nadir is stuck with the following task.
He must define the is-a-boss-of relation between every pair of appointees such that no group
of 25 or more officials is organized. At the micro-level (groups of size less than 25), there
may be organized groups; at the macro-level, however, confusion should prevail. How will

Nadir assign ranks to these thousand appointees in order to achieve his crooked objective?

In this section we consider Nadir’s problem in detail and provide a general solution, the
key to which is a theorem of Erdds and Spencer (Chapter 1 of [ES74]). To make this section
self-contained, their result is proved here as Theorem 1. It turns out that Nadir’s problem
falls in the category of problems for which the solution space is abundant with candidates

possessing a given property and random search can be used to derive the solution.

26

www.manaraa.com

Nadir’s problem can be described as that of constructing a network of nodes, where each
node represents an official. Informally, a network represents an assignment of precedence
between all possible pairs of nodes. It can be represented by a complete directed graph

where an edge from z to y represents the relation “x is a boss of y.”

Formally, a network T' on a set V is a directed graph (V,T) where T C V x V such that
for all z,y € V, = # y, either (z,y) € T or (y,z) € T, but not both. A network T is a
hierarchy if (z,y),(y,z) € T implies (z,z) € T, Va,y,z € V. Networks and hierarchies are

called tournaments and transitive tournaments, respectively, in [ES74].

Nadir’s problem then, which we refer to as the NetHierarchy problem, is to construct a
network that does not have “large” hierarchies. In particular, he wants a network 7, on
n nodes such that every subnetwork of 7, containing m or more nodes is not a hierarchy.

(In the case at hand, n = 1000 and m = 25.) A possible approach to constructing such a

n

") subnetworks

network would be to choose a network at random and check that all the (
are not hierarchies. If a large hierarchy is found, another T, can be picked randomly and
checked. This process can be continued until a network with the required property is found.
As we will see below, for appropriate values of m, one can even dispense with the check as

any random 7T,, would suffice with a very high degree of confidence.

In a hierarchy it is possible to assign a unique rank to each node. The top-ranked node
is a boss of all others, and in general, the ith-ranked node is a boss of all but those with a
better rank. Hence a hierarchy is equivalent to a permutation of the n nodes. Figure 3 shows
a six-node network that contains a hierarchy on five nodes. The permutation corresponding
to the hierarchy on nodes {1,...,5}is 7 :{1,2,3,4,5} — {2,3,1,4,5} as 2 is a boss of all
other nodes, 3 is a boss of 1, 4, and 5, and so on. Also, note that the full network is not a
hierarchy because of the cycles among nodes {6,3,1}, {6,3,4}, and {6,3,5}.

Erd6s and Spencer [ES74] have proved an important property concerning the size of
hierarchies in arbitrary networks, which we now present. Define x(n) to be the largest
integer such that every network on n nodes contains a hierarchy of x(n) nodes. Unless

stated otherwise log denotes logarithms to the base 2.

Theorem 1 ([ES7T4]) x(n) < 1+ |2logn].

The theorem is proved by showing that there exist networks that do not have any hierar-

chy on 1+ |2log n| nodes. The proof is non-constructive. Let 7, be the class of all networks

27

www.manaraa.com

o @

Figure 3: A network with a hierarchy on five Players with = : {1,2,3,4,5} — {2,3,1,4,5}.

on n nodes and let 7! be the class of all networks that have a hierarchy on 1 + |2logn|

nodes. We show that there are more networks in ?,, than in ?/,.

We first count the number of networks in ?,,. Each network in ?,, consists of n vertices

and (%) edges, each of which can take two possible directions. Thus,

2] = 2 2)

Counting the number of networks in 7/ is a bit more involved. Since each network in
?! has a hierarchy on ¢ = 1+ |2logn]| nodes, we first select the ¢ nodes and assign them
a permutation, which will uniquely determine a hierarchy on these nodes. The remaining
edges in the graph consisting of (n — ¢) nodes can be assigned arbitrarily. We count the
number of networks for all the (7,) possible choices of ¢ nodes and all the ¢! ways of assigning

them a permutation. Formally,
7h = UUTun (3)
A T

where A is a subset of n nodes such that |A| = ¢, 7 is a permutation of the ¢ members of
A, and T4 is the set of networks on n nodes consistent with the hierarchy on A determined
by w. That is, each network in T4 » will contain a hierarchy on A uniquely determined by

7. The structure of the network on the remaining n — ¢ nodes, however, is unspecified. In

28

www.manaraa.com

particular, the direction of (3) — (¥) edges between these n — ¢ nodes is unspecified. Hence,
Ty = 26)-G) (4)

Therefore, the total number of networks in 7/ is bounded by

20 < DN Taal = |]] pt2® D < 2@ = (5)

A 7 14
This implies that ?,, —?/ is non-empty and there exists ' € 7,, —?! containing no hierarchy
on ¢ =1+ |2logn| nodes. O

The above theorem establishes an upper bound on the largest integer y such that every
network on n nodes contains a hierarchy on x(n) nodes. It can also be proved, by induction
on n, that x(n) > 1+|log n|. Clearly, if it were the case in Nadir’s politics that no hierarchies
be formed on m < 1+ |logn| nodes, then every assignment of the is-a-boss-of relation would
violate Nadir’s requirement and he should make arrangements for a hasty departure. On
the other hand, for values of m slightly greater than the upper bound of Theorem 1, the
probability that a randomly selected graph contains a large hierarchy is minuscule. For
m > 1+ 2|logn| this probability is bounded by

91
:{,”| < (")m! 2= () (6)

n | m

Therefore, if Nadir were to construct a random network on 1000 nodes, the probability that
it will have a hierarchy on any subset of 25 nodes is less than 0.0000000000000004. Thus a
very promising strategy for Nadir is to toss a coin to determine the direction of each edge in

the network; the odds are less than 4 in 10'® that he will construct a bad network.

The preceding discussion, unfortunately, leaves a “gray area” in the solution space: it is
not clear how to solve the NetHierarchy problem for values of m between 1 + |logn]| and
1 4 2|logn|. For values of m less than the lower bound on Y, the solution is immediate;
for values slightly greater than the upper bound, Theorem 1 immediately yields a trivial
probabilistic algorithm as basic counting procedures reveal that there is an abundance of
solutions in this region. However, for the gray area in between the upper and lower bounds
on xY — which can possibly be shrunk by making the bounds tighter — exhaustive search
seems to be the only way for solving this problem. The latter is prohibitively expensive even
for moderate values of n and m. For example, if Nadir required that there be no hierarchies

on18-nodes;(13°°)subnetworks must be tested.

29

www.manaraa.com

2.4 Probabilistic Hashing

Many problems require maintaining a table of values, or keys, and performing insert, search,
and delete operations on them. Typically, the set of possible keys is very large, though at
any one time only a small fraction of the keys will actually be in the table. In this section,
we study a very popular and potentially constant-time solution to table management called

hashing.

Throughout this section, T'[0...m — 1] will denote the hash table and U[0... N — 1] will
denote the universe of keys. In general, given a key « € U, we will be interested in inserting
z into T, searching for = in 7', or deleting = from T'. The total number of keys in the table
will be limited to n, n < m < N, and S, |S| = n, will denote the set of keys that are to be

inserted into the table.

Let h : U — [0...m — 1], be a function that can be evaluated in constant time. The
basic scheme underlying hashing is as follows. To insert a key into the table, simply store
it at T'[h(z)], if possible. To search for or delete z, just check location h(z) in table T'. All
these operations take constant time, fulfilling the promise made earlier. However, there is
a serious problem with this scheme. If there is another key, say y, such that h(z) = h(y),
then x and y will try to occupy the same place in the table. This phenomenon is called
a collision. Much research has been conducted on finding hash functions that result in a
minimum number of collisions and on data structures for storing keys that hash to the same

table location.

For hashing to perform well the following two requirements are essential: the hash func-
tion distributes input keys uniformly over the table, and all the keys are equally likely. While
the first requirement can be met by appropriately choosing the function h(z), the second
requirement is hard to fulfill as it postulates certain behavior on the input distribution. In
practice, this requirement is not only beyond the algorithm designer’s control, it is often
violated. For example, a typical application of hashing is maintaining symbol tables for
compilers. For most programs, variable names such as I, J, K are more common then, say,
XQP. Thus it is unreasonable to expect a uniform probability distribution from the input to
a symbol table. However, if it is known that the input is biased, it may be possible to tune
the hash function. Perfect hashing represents the ultimate form of tuning, i.e., total collision
avoidance. Another way of minimizing the risk due to biases in the input is to choose the
hash function dynamically and at random. These two schemes are explored in the following

sections.

30

www.manaraa.com

2.4.1 Perfect Hashing

Heuristic methods for perfect hashing were first introduced in [Spr77]. A recent overview of
perfect hashing can be found in [GBY91]. Several seminal results that make perfect hashing
possible were proved in [FKS82, Meh82]. The discussion in this section is based on Section
2.3 of [Meh84a).

A function A : U — [0...m — 1] is called a perfect hash function for S C U if Va,y €
S, h(z) # h(y) if # # y. For any given set S of input keys such that |S| = n < m, clearly
there exists a perfect hash function: take any one-to-one mapping from S to any n distinct
elements in 7', and map all other elements of U so that they do not collide with the elements
of S. Such a brute force approach to constructing a perfect hash function, however, is not
very beneficial as it involves a table look up that may take O(n) time. For perfect hashing

to be of practical use, the following criteria should be met:

e The program to compute a perfect hash function should be small in size.
e For a given S, m and N, it should be easy to find a perfect hash function.

e One should be able to evaluate a perfect hash function in O(1) time.

In this section we consider the problem of finding a perfect hash function given the values
of S, m and N. The use of random search, in a suitably constructed family of functions, will

be the principal probabilistic technique used in the construction of such a function.

Mehlhorn [Meh84a] has shown that there exists a program of length O(n?/m +loglog N)
that computes a perfect hash function for a given set S C U. This result, however, only
demonstrates the existence of such a function. To find an actual perfect hash function,

consider the following family H of hash functions:
H = {hg|hr(z) = (kz mod N)mod m; 1 <k < N}. (7)

Without loss of generality, let U = [0...N — 1] be the universe of keys with N prime.
Primality of N can be achieved by adding non-existent keys to U. The resulting universe
will not be substantially larger than the original U as prime numbers are sufficiently dense

(see Section 2.2). For a given set 3, let

B(i,k) = {z|z € S and (kz mod N) mod m = ¢} (8)

31

www.manaraa.com

be the set of all the keys in S that collide at table location ¢ when hj is used as the hash
function. Each such set B(¢,k) is called a bucket. Also, let b(z,k) = |B(¢,k)], 0 < ¢ < m.
Clearly, b(¢,k) is one more than the number of collisions at 7'(:) when the hash function
used is hg. Using elementary counting principles and properties of modulo arithmetic one

can verify the following inequality [Meh84a)|:

T l(’”z b, k)2) —n

k=1 =0

2n(n — 1)(N — 2)

m

<

(9)

The quantity 75" b(¢, k)2 — n, for any particular value of k (and thus for any particular
hi(z)), is a measure of the number of collisions. Let us define Mg(k) to be this measure.
Equation (9) puts a bound on the sum of Mg(k) for all possible values of k. Since Mgs(k)
is always positive, more than half of them cannot exceed twice the upper-bound on the
summation in Equation (9). Therefore, at least half of all the possible k’s must satisfy the
relation Mg(k) < 4n(n — 1)/m, since otherwise equation (9) would be invalidated. In other
words, for a randomly picked k € [1...N — 1],

4n(n — 1) 1
Prob |Mg(k) < ——=| > 27 (10)

m
and the class H is rich in functions for which Mg(k) is bounded by O(n?/m).

Equation (10) provides a way of finding, in O(n) expected time, an hj such that Mg(k)
is bounded by 4n(n —1)/m. Select a random k and compute Mg(k). If it satisfies the bound
we are done; else select another k and do the same thing. The computation of Mg(k) will
take O(n) time. Equation (10) guarantees that the expected number of tries will be no more

than two. Thus, there exists a function h; such that

Jary

S ok < noginn D (11)

=0 m

which can be found in O(n) expected time. One can also show that this procedure will

terminate in O(nlog n) time with high probability.

The above procedure forms the basis for finding a perfect hash function for a specific
table size. In particular, we consider the two table sizes m = n and m = O(n?), and prove

the following results:

1. If m = n then an h;, satisfying 37" b(i,k)> < 5n can be found probabilistically in
expected time O(n).

32

www.manaraa.com

2. f m = 2n(n — 1) + 1 then hy, such that hg(z) = ((kz) mod N) mod m, is a perfect

hash function for S and can be determined in O(n) expected time.

The first result follows by substituting m = n in equation (11). For the second result,
substituting m = 2n(n — 1) 4+ 1 in equation (11) yields:
m—1
b(i, k) < n+2. (12)
=0
Since 375" b(i,k) = n, equation (12) implies that b; < 1 for all s (the only solution for X;
in the set of equations > X; = n and > X? < n+2is X; < 1). As b(s,k) is the number
of elements in S that will occupy position 7 in the table, there will not be any collisions for
this value of k. Hence h; in equation (11) with m = O(n?) is a perfect hash function if an

appropriate value of k is used.

Thus the class H of functions has a perfect hash function for any S, |S| = n, if the size of
the table is O(n?). Furthermore, such a function can be found in O(n) expected time. The
only problem with this scheme is that the size of the table is much larger than |S|. Our first
result suggests a way out. We can partition S so that the square of the sum of all bucket
sizes is no more than 5n. This can be done with one hash function, which obviously is not
perfect. A second hash function, which is perfect for the smaller partition, can be used for

each partition. The following theorem gives a more precise statement.

Theorem 2 Let N be prime and S C [0...N — 1], |S| = n. A perfect hash function
h :S—10...m—1], m =9n, with O(1) evaluation time and O(nlogn) program size can

be found in O(n) ezpected time.

Proof: The perfect hashing function is constructed in two steps. In the first step we find a
k such that (kz mod N) mod m partitions S into subsets B(¢,k), where

B(i,k) = {z|z € S and h(z) =1} (13)

such that Y7 ' |B(i,k)|> < b5n. Such a k exists and can be found in O(n) expected
time. Let ¢; denote 2b(¢,k)(b(¢,k) — 1) + 1. In the second step, we find k;, for all 7, such
that (k;z mod N) mod ¢; is a perfect hash function for a table of size ¢; and the set of keys
B(i,k). By the second result proved earlier, this will take O(b(3,%k)) expected time. The

program PerfHash computes the perfect hash function for a table of size 5n.

33

www.manaraa.com

PerfHash { (* Computes perfect hash function h(x) *)

i := (kx mod N) mod n
= (ki x mod N) mod c¢;
hs Yihe ¢ 5

If the starting index for each sub-table (X123 ¢;) is stored, k(z) can be evaluated in O(1)
time. Also, it is easily seen that the total size of the hash table in the above program is 9n
based on the fact that one can find a hash function kg, such that 3 b(¢,k)® = 5n. In the
second step each bucket is mapped into a space of size 2b(7,k)(b(¢,k) — 1) + 1. Hence the
total space necessary is

> {2605, k)(b(3, k) — 1)+ 1} = 2 > b5, k) =2 D b(i,k)+n

1<i<n 1<i<n 1<i<n
= 2X5mn—2n+n

= On.

As for the total space occupied by PerfHash itself, each YiZt ¢; used by the program can
be at most log n bits long as it is an index into an array of size 9n. Since we have to store

n such numbers, the size of the program PerfHash is O(nlogn).

The time needed to construct PerfHash is the time required to find £ and all the k;’s.
Thus it will take O(n) + 75" O(b(i,k)) = O(n) units of expected time. The fact that this

function is perfect is guaranteed by the two results proved earlier. a

We close this section by pointing out why the technique of random search works for
perfect hashing. The class H of function is particularly rich in functions that are “nearly
perfect.” Thus, a randomly selected function from H will, with high probability, partition
the set S evenly. A perfect hash function can then be used for each of these partitions, which
are sufficiently small. The key here is the richness of the solution space. Had the perfect
hash functions been rare in H, our random selection and testing procedure would require a

long search through the m” possible functions from U to 7.

2.4.2 Universal Hashing

As seen earlier, for most fized hash functions, hashing provides us with an O(1) expected

timegandyO(n)pworstycasegtime procedure for table maintenance. Universal hashing deals

34

www.manaraa.com

with the possibility of biases in the input, which may result in the O(n) complexity, by
randomizing over hashing functions. In universal hashing, first discussed in [CWT9], one
works with an entire class, H, of hashing functions instead of picking any one single hashing
function a priori and using it for every run. At the beginning of each run a function is
randomly chosen from H and used for that run. Since it is unlikely that a “bad” function
would be picked in most runs, for H properly defined, the running time averaged over many

runs is expected to be small.

For any randomly selected element of H to possess a small expected access time for each
set of keys, almost all hashing functions in H should distribute the set of input keys fairly
uniformly over the hash table. We define a class H of functions to be c-universal if only a
fraction ¢/m of functions in H produce a collision on any pair z, y in the universe of input
keys. Formally, H C{h|h:[0...N—1] — [0...m —1]}is c-universal if Vz,y € [0... N — 1]

such that = # v,
c|H|

[{hlh € H and h(z) = h(y)} < < (14)

For N prime, consider the particular class H; defined as follows:

Hl — {ha,b

hop(z) = [(az 4+ b) mod N] mod m,a,b€ [0...N —1]}. (15)

It can be shown that the class H; is c-universal for ¢ = [%]2 Since each function in H; is
fully specified by @ and b, there are N? functions in this class and O(log N) bits are required
to pin-point any one function. Also, a random function can be chosen by randomly picking

a and b from [0... N — 1].

Let us assume that each hash function in H; has the same probability of being picked
in any run, and hashing with chaining® is used. Under these assumptions it can be shown
that the time taken by universal hashing to perform access, insert and delete operations,
or any sequence of such operations, is the same as the expected time taken by hashing
with chaining when all inputs are assumed to be equally-likely [Meh84a]. In fact this result
holds for any c-universal class of functions. Thus, universal hashing, with no assumptions
on the input distribution, should perform as well as hashing with chaining when the best
possible input distribution (i.e., completely unbiased input) is assumed. Note that even
though the end-result, as far as the performance is concerned, is the same for these two

hashing paradigms, there is a considerable difference between the assumptions underlying

°In hashing with chaining, all keys that collide at a given index i in the hash table T are stored as a

linked list at T7z].

35

www.manaraa.com

them. In universal hashing the algorithm controls the dice and not the user, and therefore

the expected complexity is O(1) even for maliciously designed inputs.

Universal hashing is an example of the control randomization technique we described in
Section 1.1. Control randomization is useful for other problems for which many efficient al-
gorithms exist, such as sorting. If each one of these algorithms has good average performance
but poor worst case performance, randomization over the space of available algorithms is a

way to eliminate the risk involved in using any single one of them.

2.4.3 Some Recent Results

The FKS perfect hashing algorithm discussed in Section 2.4.1 results in a hash table size
that is larger than the total number of keys. An algorithm is said to be order preserving if
it puts entries into the hash table in a prespecified order, and minimal if it generates hash
functions where the table size is the same as the total number of keys. Recently there has

been a flurry of research activity in the areas of minimal and order preserving perfect hash

functions [Cic80, Jae81, Cha84, LC88, CHM92, MWHC93].

Czech, Havas and Majewski [CHM92| present a probabilistic algorithm for generating
order preserving, minimal perfect hash functions. This algorithm, which runs very fast in
practice, uses expected linear time and requires a linear number of words to represent the
hash function. The results of [CHM92] are further extended in [MWHC93] to a family
of elegant probabilistic algorithms that generate minimal perfect hash functions allowing
arbitrary arrangements of keys in the hash table. The idea used is the following. Certain
integer congruences that correspond to acyclic r—graphs can be solved in linear time. This
uses a result in [ER60], which states that the majority of random sparse 2—graphs are acyclic.
It is extended in [MWHC93] to r—graphs, with r > 2. Perfect hash functions are obtained
by randomly mapping a set of keys into an acyclic r—graph. The mapping is achieved via
universal hashing. Once completed the constructed set of linearly independent congruences,
corresponding to the created r—graph, is solved, and the solution is a minimal perfect hash
function. For this type of set of congruences any integer solution is legal, so the method

offers total freedom of choice of the address for each key.

A dictionary is a data structure that allows the storage of a set S of distinct elements
such that membership queries of the form “Is z in S?” as well as updates (i.e. “Add = to S”
and “Delete z from S”) can be performed efficiently. The FKS scheme considers only static

sets where no updates to S are allowed. Another line of investigation by Dietzfelbinger

36

www.manaraa.com

et al. [DKM*88, DMadH92, DGMP92| attempts to use perfect hashing for maintaining
dictionaries in real-time situations. By using certain classes of universal hash functions they
show that the FKS probabilistic method can construct a perfect hash function in ©(n) time,
with the probability 1— O (#) [DGMP92]. The perfect hash function can be used to support
a real-time dictionary (i.e., a dictionary which allows insertions and deletions of keys, with

no knowledge about subsequent events) in expected constant time.

For other related developments in order preserving minimal perfect hash functions, which
are practical for very large databases, see [FCDH91, FHCD92]. A considerable body of
literature exists on minimal and order preserving hash functions and a complete discussion

is beyond the scope of this survey. An overview of some of the results outlined above can be

found in [MadH90].

Majewski, Wormald, Havas and Czech [MWHC93] have classified numerous algorithms
for perfect hashing into four different broad categories. The first category is comprised of
algorithms that rely on number theoretic methods to determine a small number of numeric
parameters. The very first discussion of perfect hashing, by Sprugnoli [Spr77], falls into this

category. Jaeschke’s reciprocal hashing is another example from this category [Jae81].

The second category consists of perfect hash functions that use segmentation of keys. In
these algorithms, the keys are first distributed into buckets by a non-perfect hash function.
Perfect hash functions are then computed and used for keys in each bucket. The FKS scheme

described earlier falls in this category.

The third category of perfect hashing schemes uses some kind of backtracking procedures
to search through the space of all possible functions — typically an ordering heuristic is used
to cut down the search space — in order to find a perfect hash function [FHCD92]. Finally,
the fourth category consists of algorithms that map the given n keys into a n X n matrix

and use matrix packing algorithms to compress the 2-D array into linear space [Meh84a).

All four categories of perfect hashing algorithms are rich in probabilistic methods. For
examples of algorithms from each category, we refer the reader to [MWHC93], an excellent

guide to a whole panoply of perfect hashing schemes that have appeared in the literature.

Perfect hashing has recently found application in the area of hardware design. In [RP91],
perfect hash functions are used to construct a simple associative memory. Gupta [Gup93]
uses it for response checking in digital circuit test. In both cases, random search is used
to compute a perfect hash function for a given set of keys. This hash function is then

implemented in hardware and its constant time, collision-free indexing property is used to

37

www.manaraa.com

access a pre-arranged table of values.

The Nearest Neighbors problem considered next illustrates the technique of random sam-

pling, which is at the heart of many randomized algorithms in computational geometry.

2.5 The Nearest Neighbors Problem

We describe Rabin’s probabilistic algorithm for the Nearest Neighbors problem, one of two
probabilistic algorithms Rabin presented in his seminal paper [Rab76]. The other, a proba-
bilistic algorithm for primality testing, was the topic of Section 2.2.

Consider a finite set S = {z1,...,z,} of points in I-dimensional space, i.e., S C %!, where

R denotes the reals. The Nearest Neighbors problem is to find a pair of points z;, z; such
that

d(z;,z;) = min{d(z,,z,),1 < p < ¢ < n}, (16)

where d(z;,z;) is the usual distance function on R!. Notice that z; cannot equal z; and that
there may be more than one such pair of nearest neighbors in S. We refer to the distance

separating nearest neighbors in a set S as émin(.5).

A brute-force algorithm for Nearest Neighbors computes all the n(n — 1)/2 relevant
mutual distances and their minimum. A recursive algorithm in [Ben80] requires O(nlogn)
distance computations in both the average and worst case. Rabin’s probabilistic algorithm,
under a certain reasonable assumption about the problem input (discussed below), has an
expected running time of O(n) and thus outperforms any known sequential algorithm. This
algorithm, unlike his algorithm for primality testing, is guaranteed to produce the correct

answer.

The basic idea behind Rabin’s algorithm is one of divide-and-conquer: decompose the

set of points .S into clusters, and look for nearest neighbors within each cluster. Let
S=5USU..US; (17)

be a decomposition D of S, and n; the cardinality of S;. Let N(D) be a measure of D,

defined as
k ’I‘l,z(’l”l,z — 1)

N(D) =3 ——— (18)

Ifit is known that a nearest neighbor pair falls within one of the S;, then N(D) represents

the number of distance,computations needed to find the nearest neighbors of S: simply use

38

www.manaraa.com

® To

® Tg
LI rd

3 ®

® Ty

® Tq 6
® Ty

Figure 4: Pictorial explanation of Rabin’s Lemma 1.

brute force within a cluster and then compare the nearest neighbors of each cluster. Central
to the algorithm then is how to compute, in O(n) time, a “desirable decomposition” D of S,
such that a nearest neighbor pair belongs to the same cluster of D and N(D) = O(n). As

clarified below, the use of randomization is key to solving this problem.

In the two-dimensional case, a desirable decomposition can be obtained by first enclosing
the points of S in a square lattice ? of mesh-size é. It is not difficult to see that by choosing
8 > bmin(S) we are guaranteed that, at worst, nearest neighbors z;, z; lie on squares of ?
with a common corner. By doubling the mesh-size, we can hope to obtain a lattice in which
these points will certainly lie within a single square. But to ensure that all adjacent squares
of 7 are tiled by a single 26-by-26 square, we need to construct four lattices of mesh-size 26.
Assuming, without loss of generality, that S is a subset of the non-negative quadrant, then
the lower, left-hand corners of these lattices should be placed at locations (0,0), (0,6), (4,0),
and (6, 6).

The proof that this lattice-based technique for decomposing S works as advertised, is
given in Lemma 1 of [Rab76]. An example of this proof, also from [Rab76], is shown in
Figure 4. Here z3 and z; are nearest neighbors, and ¢ is greater than or equal to the
distance between them. Doubling é encloses the pair in a single square. This argument

generalizes to any dimensional space.

39

www.manaraa.com

We now know that ¢, the initial mesh size, should be chosen large enough so that nearest
neighbors at worst fall in adjacent squares. On the other hand, we still need to choose é
small enough so that N(D) is O(n), to obtain an efficient algorithm. Rabin used random
sampling to arrive at such a §. In particular, he showed that if § is chosen to be 8,:n(S1),
where S; is a randomly chosen subset of S such that |S;| = n?/3, then with a very high
probability® the measure of the decomposition induced by the lattice of mesh-size § will be
O(n) (Theorems 6 and 7 of [Rab76]). Intuitively, this random sample S; of S is large enough
in size so that a grid of mesh-size § will contain a small number of points within any lattice

square. Thus, we have algorithm NearNeb for the Nearest Neighbors problem:

NearNeb {

§; := randomly chosen subset of S such that |S|= n?/3

§ := 8min(S51) (* how to do this is described below *)
I' := square lattice of mesh size ¢ and origin (lower left-hand corner) at
(0,0), enclosing the points of S
I'y,...,T'4y := four lattices with origins (0,0), (0,4), (6,0) and (4,9),
respectively, derived from I' by doubling mesh size to 2§
FOR i := 1 TO 4 {
find the decomposition S5 = S;i) U---u S,(c? induced by T;
FOR j := 1 TO k;
((i) ()

Y) := nearest neighbor pair within lattice square SJ(.z)

}

(z,y) := nearest pair in {(mgi),ygi))ﬂ <i<4,1<5 <k}

To show the expected running time of O(n), we first observe that é,,;,(S51) can be com-
puted by invoking the algorithm recursively for a second time. A subset S, of S; is randomly
chosen so that |S,| = |S1|?/® = n*/®. The brute-force technique can now be used to compute

8min(S2) in time O(n) without resorting to any further recursion.

6To be precise, Rabin proved that this probability is at least 1 — 26_"‘1/6, where ¢ = v2A for A > 0 a

constant.

40

www.manaraa.com

Next, consider the cost of finding the decompositions induced by the ?;. Rabin showed
that if n and the z;, normalized to integers with respect to 26, are within “appropriate
ranges,” then hashing can be used to find the decompositions in expected time O(n). Oth-
erwise, sorting is needed and takes O(nlog n) time. Rabin argued that, in practice, hashing

is almost always applicable.

We have previously argued that the expected value of N(?7;), 1 < ¢ < 4, is O(n), and
hence the total number of distance computations required is O(n). This gives us the desired

running time of O(n) for the algorithm.

There is a small probability that the remaining n — n?/? points not in the sample S; will
cause the algorithm to behave inefficiently. In the worst case, S; will contain widely spaced
points, resulting in a é that is so large that all n — n?/® points not in S fall into the same
square of the grid. As a result, the partition of S will consist of set S; with n?/? points and
the set S, with the remaining n — n?/® points. Using brute-force distance computation on

the set S, will require O(n — n2/3)? or O(n?) time.

The Nearest Neighbors problem has illustrated the power of random sampling: an algo-
rithm was found that almost always outperforms all known conventional algorithms for the
problem. The next problem we consider — interactively checking the correctness of any pro-
gram that purportedly solves the graph isomorphism problem — provides another example

of the input randomization technique.

2.6 Interactive Probabilistic Proofs

Two important requirements of any proof system — a collection of axioms and inference
rules used for proving statements about some domain of discourse — are completeness and
soundness. Completeness refers to the ability to prove all theorems (i.e., all true statements)
while soundness requires that the negation of a theorem is never a theorem. Thus, the
ability to generate proofs and to verify them can be seen as complementary tasks. Typically,

verification is simpler.

Traditionally, P has been considered the class of problems that can be solved efliciently,
i.e., in polynomial time, and NP has been considered the class of problems that can be
verified efficiently, i.e., in nondeterministic polynomial time. Recent discoveries, however, of
efficient polynomial-time randomized algorithms for a large number of problems (such as the

ones discussed in this survey) have led to a new notion of efficient computation, viz., the

41

www.manaraa.com

class RP of problems that can be solved in randomized polynomial time. Likewise, a new
notion of efficient verification has emerged, viz., the class IP of problems that can be verified
through the use of an interactive probabilistic proof system. We will have more to say about
RPin Section 4. This section examines the concept of interactive probabilistic proof system

and its applications.

In an interactive probabilistic proof system (interactive proof system, for short), an all-
powerful prover tries to convince a skeptical verifier that it has a solution to a difficult
problem. The prover’s unlimited computational power allows it to solve such problems
“with ease.” For example, a prover can potentially find a Hamiltonian path in a graph, or
determine if two graphs are isomorphic. The verifier, on the other hand, is required to be a

polynomial-time randomized algorithm.

The prover and the verifier engage in a dialogue in which the verifier can toss coins
and ask the prover to solve specific instances of the problem in question. The prover is only
expected to provide solutions to these instances and nothing else. It is required that the total
length of the messages sent back and forth between the prover and the verifier be bounded
by a polynomial in the length of the input. The objective of the verifier is to convince itself

that the prover does in fact have a solution to the problem.

Independent formalizations of interactive proof systems by Goldwasser, Micali and Rack-
off [GMRA&9], and Babai and Moran [BM88, Bab85], which have been shown to be equiva-
lent [GS89], allow a polynomial-time verifier to toss coins and arbitrarily interact with the
prover. In [GMRR&9], the outcomes of the coin tosses made by the verifier are hidden from
the prover. In [BM88]|, the proof system is considered as a game played between two play-
ers called Arthur and Merlin. Once again, Arthur and Merlin (the verifier and the prover,
respectively) can toss coins and can talk back and forth. However, in this proof-system,
unlike that in [GMR89], all coin tosses made by the verifier are seen by the prover. These
formalizations have led to the emergence of a hierarchy of probabilistic complexity classes

that generalizes NP [BM88].

One can also view an interactive proof system in complexity theoretic terms where the
prover tries to convince a probabilistic verifier that a string w is in a language L. Such a
proof system yields probabilistic proofs since the verifier may accept or reject w based on
overwhelming statistical evidence rather than on certainties. Recent years have witnessed a
multitude of such complexity theoretic results. For example, Ben-Or et al. in [BOGKWSS]
proposed a multi-prover interactive proof model. Using this model, Babai et al. [BFL9IO0]

proved that the class of languages that has a two-prover interactive proof system is non-

42

www.manaraa.com

deterministic exponential time. In his paper entitled “IP = PSACE,” Shamir [Sha92b]
showed that the set of problems for which interactive protocols exist is precisely the set of
problems which are solvable within polynomial space on a Turing machine. A key result for
proving IP = PSPACE (and also, MIP = NEXP [BFL90]) is by Lund et al. [LFKN90]
who presented a new algebraic technique for constructing interactive proof systems and

proved that every language in the polynomial time hierarchy has an interactive proof system.

An interactive proof system must satisfy probabilistic notions of soundness and complete-

ness:

Completeness. if w € L then, with very high probability the interaction between the prover

and the verifier must result in the verifier concluding that w is indeed in L;

Soundness. if w & L then, with very high probability, at the end of the protocol the verifier

must conclude that w is not in L.

The proof must be sound even if the prover acts maliciously and deliberately tries to fool
the verifier. Several properties of interactive proof systems concerning completeness and
soundness, and methods for constructing them are investigated in [FGM*89]. Clearly, ruling
by probabilistic evidence means relaxing the completeness and correctness criteria. However,

it does lead to interesting applications such as program testing [BR88, BK89, BLR90].

For an example of how of an interactive proof system — in particular, the verifier compo-
nent of the proof — can be used to test the correctness of a program, consider the problem
of graph isomorphism. The reader should recall that the exact complexity of graph iso-
morphism is not known: while, to date, no polynomial-time algorithm for this problem has
been discovered, a proof that it is NP-complete has been equally elusive. The following
efficient procedure for checking the validity of a graph isomorphism program is due to Blum,
Raghavan, and Kannan [BR88, BK89]. It is based on an interactive proof system for graph
non-isomorphism by Goldreich, Micali and Wigderson [GMW91].

Given a program P that purportedly solves the graph isomorphism problem and two
graphs G and H, the verifier wishes to determine whether P invoked on G and H (denoted
P(G,H)) gives the correct result. The verifier GI-Verify, whose pseudocode is now given,

operates in a randomized and interactive manner.

GI-Verify {(* Inputs: a program P and graphs G and H *)

43

www.manaraa.com

IF P(G,H) = true THEN{
attempt to establish the isomorphism
IF successful THEN RETURN "P is correct"
ELSE RETURN "P is buggy"}
ELSE{
REPEAT k times{
toss a fair coin
IF coin = head THEN{
generate a random permutation G' of G
IF P(G, G') = false THEN RETURN "P is buggy"}
ELSE{
generate a random permutation H' of H
IF P(G, H') = true THEN RETURN "P is buggy"}
} (* end REPEAT *)

RETURN "P is correct"}

GI-Verify starts by invoking P(G,H). If P pronounces G and H to be isomorphic (i.e.,
P(G,H) = true), the verifier’s task is simple. It attempts to determine the correspondence
between the vertices of G and H (how this is done will be described shortly), and returns
correct or buggy accordingly. If, on the other hand, P pronounces G and H to be non-
isomorphic (i.e., P(G,H) = false), V will put P through a series of tests. Should P fail any
one of these tests, V can conclude that P is buggy. Otherwise, V can conclude, with a high

degree of confidence, that P is correct.

Consider the case P(G,H) = true first. The verifier can establish a 1-to-1 correspondence
between the vertices of G and H, assuming that P is correct in pronouncing G and H to be
isomorphic, as follows. Starting with G, arbitrarily number the vertices of G and H from
1 to n. Attach a clique of n 4+ 1 vertices to node number 1 of G to obtain the graph G1.
Successively, attach a similar clique to each node ¢ in H to obtain Hi, and test if P(G1,Hz) =
true. Clearly, if G and H are isomorphic, and if node 1 in G can be mapped to node ¢ in H,
then P(G1,H:) will return true. Thus, if P returns false for all ¢, P is buggy. On the other

44

www.manaraa.com

hand, if P(G1,H?) = true for some 7, map node 1 of G to node ¢ of H. Repeat this procedure
for each node j € [1...n] of G. At any point, the inability to find a corresponding node in H
reflects an error in program P. On the other hand, if all the vertices in G can be mapped to
those in H then the verifier can easily test if the mapping is an isomorphism and determine

if the original answer P(G, H) = true was correct.

Consider the case P(G,H) = false next,i.e., P declares that G and H are not isomorphic.
In this case, the verifier relies on simple random choice and input randomization as follows.
It puts P through a series of tests or rounds. In each round, V tosses a fair two-sided coin
to randomly choose between G and H; randomly permutes the names of the vertices in the
selected graph to obtain a graph K that is isomorphic to the selected graph; and then invokes
P(G,K). We will refer to K as G', if the selected graph is G, and as H' is the selected graph is
H.

There are two cases depending on whether or not P is correct. If it is, i.e., G and H are
actually non-isomorphic, then in each round we should have P(G, G') = true when G is
selected, and P(G, H') = false when H is selected. Thus, in just a very small number of
rounds, the verifier can gain a high degree of confidence in the correctness of P should it

respond correctly in each round.

On the other hand, if P is buggy, i.e., G and H are isomorphic, it has no way of distin-
guishing between G' and H'. This is because G’ and H' are isomorphic and are both drawn
from the same distribution (essentially they are random permutations of the same graph).
Since P does not know whether G’ or H' is being passed as the second argument, the only way
it can distinguish them is by chance. The probability therefore of P responding correctly
(i.e., “yes” to P(G, G') and “no” to P(G, H')) k straight times is only 27k, Therefore, the

verifier should only need a few rounds to determine that P is buggy.

The verifier makes use of randomization to its advantage at two crucial junctures in the
above algorithm. First, it generates random permutations G’ and H'. If G and H are isomorphic
there is no way of telling G’ and H apart. In addition, it randomly passes G' or H' as the
second argument in each iteration thereby taxing the claimed ability of P that it can test
for graph isomorphism. The trick is so effective that it will catch P even if it is maliciously

coded and is designed specifically to fool the verifier.

The above example illustrates the power of input randomization in program testing and
interactive proof systems. The reader is referred to [BR88, BK89] for more probabilistic

checkers for problems such as matrix multiplication, sorting and several problems in group

45

www.manaraa.com

theory.

It is interesting to note that in the above example, GI-Verify was able to do its task
without having to solve the graph isomorphism problem in any sense. Also, if the graphs
are isomorphic, then the verifier can construct the 1-1 map between the vertices of the two
graphs (i.e., it gains more information than a simple yes/no answer about the isomorphism
question). However, if they are non-isomorphic, the verifier gains no additional knowledge,
other than the fact that they are non-isomorphic, about how this conclusion was reached.

This latter property is crucial to the notion of zero-knowledge proofs described next.

Zero-Knowledge Proofs

Sometimes, an additional requirement is imposed on the prover, viz., that it completely
hide the details of its solution from the verifier. In this case, the proof is referred to as a
zero-knowledge proof [GMR89, BM88, Bab85, KM0O89, GMW91]| because, even though the
verifier has an efficient means of verifying responses provided by the prover, at the end it

has learned nothing except that the prover is right or wrong.

The concept of zero-knowledge proof has turned out to be especially useful in complexity
theory [For87, BHZ87| and cryptography [GMW87, CCD88, BOGWS88, BC86]. Various
notion of zero-knowledge, a classification of these notions, and several related topics appear
in [Ore87, FLS90, KMO89]. Some complexity theoretic implications of systems that admit
zero-knowledge proofs are discussed in [AH91, For87, GMW91].

Truly Zero-Knowledge and Multi-Prover Interactive Proofs

Zero-knowledge proofs, in the traditional sense, reveal one bit of information to the verifier,
viz. w € L or w & L. In [FFS87], a notion of truly zero-knowledge proof is proposed where
the prover convinces the verifier that it knows whether w is or is not in L, without revealing
any other information. Thus, at the end of interaction, the verifier only gains knowledge
about the state of prover’s knowledge and no information about the original membership

problem.

Ben-Or et al. [BOGKWS88] propose a multi-prover interactive-proof model. In their
model, two provers jointly agree on a strategy and then try to convince the verifier, in a
polynomially bounded number of interactions, that a certain statement is true. Communi-

cationgbetweengthe proversyis disallowed while they interact with the verifier. The authors

46

www.manaraa.com

are able to prove several interesting results without making any intractability assumptions.

Noninteractive Zero-Knowledge Proofs

A zero-knowledge interactive proof system typically has three key features that distinguish it
from a traditional proof. The first is the ability of the prover and the verifier to interact with
each other. Secondly, the verifier can toss coins that are hidden from the prover, which means
there is an element of “hidden randomization”. Finally, the prover has the ability to solve
a hard problem that the verifier cannot solve directly. Thus, the prover embeds in its proof
the computational difficulty of some other problem. As noted by Blum et al. in [BDMP91],
this requires a rather rich set of conditions to be present before a zero-knowledge interactive

proof can be devised for a problem.

Another notion that is gaining popularity is that of noninteractive zero-knowledge proofs
first proposed by Blum, Feldman, and Micali [BFM88]. A notion of non-interactive zero-
knowledge proofs based on a weaker complexity assumption than that used in [BFMS88] is
presented in [DSMP87]. Most of the work to date is summarized in [BDMP91].

In interactive zero-knowledge proof-systems, the prover P interactively proves to the
verifier V that a certain theorem is true without giving away the details of the proof. In non-
interactive zero-knowledge systems, as the name implies, interaction is forbidden: P writes
down the proofs and mails it to V for verification under the assertion of zero-knowledge.
Instead of interaction, P and V are allowed to share a short random string. While such a
concept of “shared randomness” has been used by others (see, for example, [GS89]), shared
random strings represent a much weaker requirement than most others (e.g., public coin
tosses) used in the literature. As observed in [BDMP91], proofs using shared randomness do
not rely on foiling the adversary by the unpredictability of the coin tosses, as has been the

case so far, but rather on the “well mixedness” of the bits of the shared random string.

This concludes our survey of sequential randomized algorithms. The next section will

consider distributed randomized algorithms.

47

www.manaraa.com

3 Distributed Randomized Algorithms

In the second half of our survey we look at several randomized algorithms for distributed
computing, viz., the Dining Philosophers’ problem (DinPhil), the Communication Guard
Scheduling Problem of CSP (CommGuard), the Leader Election problem (LeadFlect), the
Permutation Message Routing problem (MsgRoute), and the Byzantine Generals’ problem
(ByzAgree). We saw in the sequential case that randomization was used to obtain faster
algorithms (sometimes at the expense of absolute accuracy), or to guarantee that the worst-
case performance of an algorithm is no worse than the algorithm’s expected performance.
Similar motivations are also present in the distributed case, as demonstrated in this section.
However an important additional concern is present: there are certain problems in distributed
computing that have no deterministic algorithm—we have no choice but to toss coins. The

probabilistic algorithm for the Dining Philosophers problem typifies this situation.

To obtain a notation for distributed algorithms, we augment the imperative language
used in Section 2 with constructs for shared memory access and message passing. For the

former we introduce the instruction TEST&UPDATE, which is used as follows:
result := TEST&UPDATE(flag, true_value, false_value)

The effect of this command is, in one instruction cycle, to assign to the variable result the
old value of the shared boolean variable flag, and to assign to flag the value true_value
if its old value was true and false value otherwise. For example, besides returning the
old value of variable flag, the statement result := TEST&UPDATE(flag, FALSE, TRUE)

inverts the value of flag.

Because everything happens in one instruction cycle, the TEST&UPDATE operation cannot
be interrupted, and access to shared variables is therefore atomic. TEST&UPDATE is also
assumed to behave fairly in the sense that no process is ever indefinitely denied access to a
shared variable in favor of other processes. As such, the phenomenon of “process starvation”

is avoided.

Unconditional updates to shared variables will be expressed using the standard assign-

ment operator. Such assignment is also assumed to be atomic and fair.
For message passing, we introduce constructs of the form
SEND(expry,...,exprg) TOP

RECEIVE(X4,...,x1) FROM P

48

www.manaraa.com

The send command executes asynchronously and results in the transmission of the values
of the expressions expriy,...,exprx to the named process P. The receive command inputs
values for the variables x1,...,x1 which have previously been transmitted by process P. The
underlying communication medium is assumed to be faultless in that messages are received

intact and in the order of transmission.

3.1 The Dining Philosophers Problem

We describe the randomized algorithm of Lehmann and Rabin [LR81] for the well-known
Dining Philosophers problem. The problem, posed originally in [Dij71], is an anthropomor-

phized resource allocation problem, and is described in [Hoa85] essentially as follows:

There once were n philosophers Py, Py, ..., P,_; seated around a circular table in a
clockwise fashion. To the left of each philosopher laid a golden fork, and in the center

stood a large bowl of spaghetti, which was constantly replenished.

A philosopher was expected to spend most of his time thinking; but when he felt
hungry, he picked up his own fork on his left, and plunged it into the spaghetti. But
such is the tangled nature of spaghetti that a second fork is required to carry it to the
mouth. The philosopher therefore had also to pick up the fork on his right. When he
was finished he would put down both his forks, and continue thinking. Of course, a
fork can be used by only one philosopher at a time. If the other philosopher wants it,

he just has to wait until the fork is available again.

Additionally, any algorithm that coordinates the philosophers in the above-described
manner must be deadlock free—if at any time there is a hungry philosopher, then eventually

some philosopher will eat; and lockout free—every hungry philosopher eventually gets to eat.

Many deterministic solutions based both on shared memory [Hoa74] and message-passing
communication [Hoa85] have been proposed. However, none of these algorithms are both: (1)
fully distributed, i.e., devoid of central memory or a central process with which every other
process can communicate; and (2) symmetric, i.e., all processes execute the same code and
all variables, local and shared, are initialized identically. Moreover, processes in a symmetric
algorithm are unaware of their identities, and therefore cannot compare their process id with

the id of another process.

49

www.manaraa.com

Py

fork[2] fork([3]

fork([1] fork[4]

fork([5]
Pl P5

Figure 5: Arrangement of philosophers and forks in the Dining Philosophers Problem.

In fact, it is shown in [LR81] that no fully distributed and symmetric deterministic
algorithm for Dining Philosophers is possible. Intuitively, this is due to the existence of
an adversary scheduler that can continually thwart the philosophers in their attempts to
reach agreement on who is to eat next, thereby leading to deadlock. For example, under
the influence of an adversary scheduler, the philosophers could behave as follows: (1) all n
philosophers become hungry simultaneously; (2) they each pick up their right fork, again
in synchrony; (3) because of the symmetry and the fact that each philosopher’s behavior
is strictly deterministic, they have no choice but to put down their forks and try again.
Furthermore, the clever adversary scheduler can cause this scenario to reoccur without end,
resulting in a deadlock. The problem then is one of “breaking symmetry” and this is precisely

the reason for introducing randomness into the behavior of the philosophers.

In Lehmann and Rabin’s algorithm, presented below as algorithm DinPhil, the simple
yet key use of randomization is in whether a philosopher waits to first obtain the left fork
or the right fork. Communication among philosophers is done strictly in a ring fashion
and uses one shared variable, fork-available[i], for each P; — P;;; pair. All additions
and subtractions are to be interpreted modulo n, where n is the number of philosophers.
Moreover, fork-available[i] is accessed only via the TESTZUPDATE instruction or via the
unconditional assignment operation for shared variables. The configuration of philosophers

and forks for the case n = 5 is illustrated in Figure 5.

50

www.manaraa.com

The algorithm can be shown to be deadlock-free in the following sense: if at any time
there is a hungry philosopher, then, with probability 1, some philosopher will eventually
eat. The proof of this result rests on the fact that the coin tosses made by philosophers
are independent random events. Thus, even if the adversary scheduler tries to bring on
deadlock, with probability 1, a combination of tosses will eventually arise that enables some
philosopher to obtain two forks. Note that the algorithm is indeed symmetric as the index
attached to a philosopher is for external naming only; philosophers themselves are not aware

of their own names.

DinPhil { (* algorithm for P; *)
WHILE TRUE DO{

(* thinking section *)

trying := true

WHILE trying DO{
choose s randomly and uniformly from {0,1}
wait until TEST&UPDATE(fork-available[z— s], FALSE, FALSE)
IF TEST&UPDATE(fork-available[;— 5], FALSE, FALSE) THEN

trying := FALSE (* 5§ = complement of s *)

ELSE fork-available[:— s] := TRUE

}

(* eating section *)

fork-available[7 — 1], fork-available[i] := TRUE

Algorithm DinPhil is not lockout-free; intuitively, a greedy philosopher P; can prevent
neighbor P;,; from ever eating by continually beating P;;; in their race to pick up their
shared fork. The algorithm can be made lockout-free by adding, for each pair of adjacent
philosophers P;, P;y1, two pairs of variables. One pair allows P; to inform P;,; of its desire
to eat (and vice versa), and the other pair is used to indicate which of P; and P;y; ate last.
Details can be found in [LR81].

51

www.manaraa.com

Lehmann and Rabin’s randomized algorithm was one of the first for distributed comput-
ing, and clearly illustrated the importance of tossing coins in a new setting—without this
capability, fully distributed and symmetric algorithms may not even exist for certain prob-
lems. The next algorithm we consider, CommGuard, also illustrates the power of symmetry

breaking through randomization.

3.2 Communication Guard Scheduling

In this section we present the randomized algorithm of Francez and Rodeh [FR80] for schedul-
ing communication guards in a CSP-like language. In CSP [Hoa78|, processes execute asyn-
chronously and exchange data by a “handshaking” style of communication. There are two
types of communication statements or commands (to use CSP terminology) in the language:
input statements of the form P ? z and output statements of the form @ !e. An input state-
ment inputs a value from the named process (P) into a local variable (z), while an output
statement outputs the value of an expression (e) to the named process (@). Thus, for ex-
ample, the simultaneous execution of the statement P, ? x by process P; and the statement
P, 'e by process P, results in the value of expression e being assigned to variable z (i.e.,
z := e). The phenomenon is sometimes referred to as “distributed assignment.” Input
and output statements, such as those in the example, that name each other are said to be

complementary.

Statements within a process, e.g., assignment, iteration, and communication, can be
executed nondeterministically through the use of a construct called the guarded command,

having the following syntax:
[Gl — 51D DGn — Sn]

Each statement S; has an associated communication statement G;, called its communica-
tion guard, such that S; is eligible for selection only if the process named in its communication

guard is likewise willing to communicate.

The problem of communication guard scheduling can now be stated as follows: Given a
set T of processes each currently waiting to execute a guarded command, construct a set
of one or more pairs of processes (P, Q) from T such that P and Q have complementary

communication guards, and no process appears in more than one pair.”

7A more general statement of the problem would allow processes in T to be waiting to execute an

unguardedscommunicationsstatement, but such a statement can always be placed in a guarded command

52

www.manaraa.com

For example, consider the system of processes

P, = [P’z = skip O Pslv = skip]
P, = [P’z = skip O Pilv = skip]
Py = [Pz = skip O Pylv = skip]

where skip is the CSP notation for the no-op statement. FEach process P; is willing to
receive a message from process P, 1, or send a message to process P;,_;, where the addition
and subtraction are performed modulo 3. There are three possible solutions to the guard
scheduling problem in this case: the single pair of processes (P;, P;41) is chosen such that P,
is receiving and P;;; is sending, 1 < 7 < 3. An unsatisfactory situation would arise if each
process were allowed to decide to send, or if each process were allowed to decide to receive;

this is tantamount to cyclic wait or deadlock.

As in the Dining Philosophers problem, an algorithm for guard scheduling must satisfy
two correctness criteria. The algorithm must be deadlock free, i.e., if two processes P and
Q wish to communicate with each other, then either P or @ will eventually participate in
a communication (although not necessarily with each other); and starvation free, i.e., if a
process P tries to communicate and infinitely often some process Q; is willing to reciprocate,
then P will eventually participate in a communication (the process @; need not be the same

each time).

Several distributed implementations of guard scheduling have been proposed includ-
ing [Sch78, Ber80, vdS81, Sch82, BS83|. Each of these algorithms must resort to some
symmetry breaking technique such as priority ordering of processes [Sch78, Ber80, BS83], or
timestamps [Sch78]. In fact, like the Dining Philosophers problem, the existence of a fully
distributed and symmetric deterministic algorithm for guard scheduling can be shown to
be an impossibility [FR80]. In the presence of symmetry, a fully distributed deterministic
algorithm is susceptible to the scenario in which a solution exists but is never found. For ex-
ample, processes may in a cyclic fashion issue communication requests to one another; due to
symmetry, this same circular wait may reappear with every future attempt by the processes
to establish communication. The lack of a fully distributed and symmetric deterministic al-
gorithm for guard scheduling is indeed one of the reasons the designers of Ada [DoD83] chose
an asymmetric rendezvous construct—nondeterministic choice in Ada exists only among the

accept alternatives of a select statement.

We now describe the fully distributed and symmetric randomized algorithm of Francez

having one alternative.

53

www.manaraa.com

and Rodeh [FR80]. (Other probabilistic algorithms for guard scheduling, which have “real
time response”, appear in [RS84].) The algorithm is given here as the iterative procedure
CommGuard, which a process P invokes upon reaching a guarded command in order to
schedule itself in a communication. Upon return, a communication link between P and one
of the processes designated by P’s current guarded command will have been established, and

actual data transfer can then occur.

In order to simplify the presentation of the algorithm, we will assume that communication
between processes is non-directional. That is, a process specifies only the name of a process in
a communication guard and not the direction (i.e., input or output). Under this assumption,
CommGuard can be implemented by providing each pair of processes a single shared boolean
variable flag; thus, the algorithm is fully distributed.® All such flag have initial value
FALSE. Access to shared variables is through the TEST&UPDATE instruction, the semantics of

which was described in the introduction to Section 3.

CommGuard { (* To schedule communications *)
trying := TRUE
WHILE trying DO{
randomly choose a partner with which to attempt a communication
let flag be the shared variable between these two processes
IF TEST&UPDATE(flag, FALSE, TRUE) THEN
trying := FALSE (* communication established *)
ELSE{
wait t seconds
IF NOT(TEST&UPDATE(flag, FALSE, FALSE)) THEN
trying := FALSE (* communication established *)

ELSE {} (* try another partner *) }

To gain some insight into the functioning of the protocol, consider two processes P and

8Without the simplifying assumption, two shared variables, flag; and flagjj, are needed for each pair
(P;, P;) of processes. Variable flag; is used to establish communication between P; and P; by matching

an-output.guard.of P; with aninput guard of P;; flagji is used in a symmetric fashion.

54

www.manaraa.com

Q) having complementary guards. Intuitively, P sets flag to true to inform @ of its desire to
communicate. P will wait t seconds for Q to respond, which @ does by resetting flag back to
false. If @ does not respond within this time interval, P will try to establish communication

with another process. The “timeout interval” t is a predefined constant to the algorithm.

Randomization enters into the protocol in the choice of prospective communication part-
ner. If a request to communicate with a process is not reciprocated within t seconds, the
WHILE loop is iterated once again, at which point another partner is chosen randomly. This
act of giving up on a potential partner and trying another is called the “retraction phase”.
WHILE loop iterations of this nature persist until, if possible, a communication channel has

been successfully established.

There are two points in CommGuard where the variable flag needs to be tested and
then immediately reset. These actions must be performed atomically within a process for
the algorithm to function correctly. The TESTZUPDATE instruction is used for this purpose.

Starvation is avoided as this instruction is also fair.

Algorithm CommGuard is deadlock and lockout free. The proofs are similar to those of
the Dining Philosophers problem. The main point is that a combination of coin tosses that
eventually enables two processes to establish communication can be shown to occur with
probability 1. As described above, the coin tosses take place in the retraction phase of the
algorithm and constitute a symmetry breaking technique. Symmetry breaking is also behind

the algorithm for leader election presented next.

3.3 Leader Election

The coordination of the computers, or nodes, in a network is often the responsibility of a
single, distinguished node. This node, called the leader of the network, may enforce mutual
exclusion in accessing a shared resource, provide services required by other nodes, or serve
other similar functions. If the leader fails, a new leader must be selected from among the
surviving nodes of the network using an election algorithm. In this section we examine the
randomized distributed algorithm of Itai and Rodeh [IR81] for leader election.

The problem of electing a leader can be stated as follows. Given a set of n identical
processes { Py, P1,..., P,_1} connected in a ring fashion (i.e., P; talks to P;;;, where subscript
arithmetic is performed modulo n), elect one of these processes as the leader of the ring. At

the end of the election, all processes must agree upon the identity of the leader. Additionally,

55

www.manaraa.com

an election algorithm must guarantee termination.

Most published leader election algorithms assume that asymmetry exists in the ring to
the extent that individual processes have unique names, often chosen from some totally
ordered set of names. The problem of leader election is then reduced to the problem of

picking the process with the smallest, or largest, name. See, for example, [CR79, Pet82].

Several authors [Ang80, IR81] have investigated the consequences of the absence of such
totally ordered names on election algorithms. Angluin [Ang80] has shown that there exists
no deterministic algorithm to carry out elections in a ring of identical processes. Angluin’s
argument is based on the observation that, in a deterministic framework, it is possible for
an adversary scheduler to force all processes to be in identical states at all times. For
example, the adversary scheduler can dictate that every message is in transit for exactly the
same amount of time, and that processes proceed in lock-step. Since processes are identical,
they start out in the same state, and, by induction, end up in identical states after any
k computation steps. Thus any potential progress toward the completion of an election is

thwarted by the symmetry of the ring.

Thus, we once again need to toss coins to solve the problem. In the randomized algorithm
LeadFlect of Itai and Rodeh [IR81], the pseudocode of which is given below, each process is
equipped with an independent random number generator. Additionally, all processes know
n, the size of the ring. The ring is presumed to preserve message order in that two messages

sent from a process to its neighbor are received in the same order in which they were sent.

The algorithm is easier to understand if one assumes that the processes operate syn-
chronously in lock-step, and that each transmitted message reaches its destination before
the processes execute their next computation step. Each process P; begins by picking a
random name, an integer in {1,..., K} for some constant K > 1. P; then propagates its
name around the ring, copying and forwarding names of other nodes that it receives. P,
determines the names chosen by all other processes by the time it receives n messages. The

nth message received by a process is the one it sent out initially.

Each process determines from its list of names whether at least one process has chosen
a unique name, i.e., one that was not chosen by any other process. The process with the
largest unique name is elected the leader. If no process picked a unique name, the processes

repeat their election attempt. Each attempt is called a round.

LeadFlect { (* algorithm used by process P; in a ring *)

56

www.manaraa.com

(* s : a list of names *)
REPEAT {
set s to empty
name := a random number between 1 and K
REPEAT n times{
add name to s
SEND(name) TO P4

RECEIVE(name) FROM P;_;

}

UNTIL at least one name in s is unique

(* the process that picked the largest unique name is the leader *)

}

Every time the processes pick random names for themselves, there is a non-zero probabil-
ity p that at least one node picks a name that is chosen by no other node. (The exact value
of p depends on the value of K and on the probability distribution of the random number
generators.) The probability that the algorithm fails to terminate in 7 rounds is (1 — p)¢, and
the probability that the algorithm executes forever is

Jlim (1 - p)F=o0. (19)
In other words, the algorithm will terminate with probability 1. The expected number of

rounds for the algorithm to terminate is clearly 1/p.

This algorithm can be improved in several ways. One way to improve the expected
running time is to change the termination condition to examine the pattern of names in the
entire ring to determine if an election is possible. For instance, if in a ring where n = 5,
and processes Py and P, chose 1, while P;, P; and P, chose 2, then the algorithm described
above would procced to another round, since no single node chose a unique name. However,
closer examination shows that leader election is possible in this situation: Py can be elected
because it is the only process, whose immediate neighbors in the ring chose 2, that chose a

1. Itai and Rodeh provide a mathematical basis for the use of such techniques.

Leader election in a symmetric ring is one of a variety of problems where reasonably

efficient,probabilistic;solutions can be found, even though a deterministic, symmetric solution

57

www.manaraa.com

is impossible. It is interesting to note that symmetric leader election in a ring with an
unknown number of processes has no deterministic nor probabilistic solution that guarantees
both termination and a non-zero probability of correctness. The reader is referred to Itai
and Rabin [IR81] for a proof of this claim.

The next problem we consider, message routing in a network, shows how randomization

can be used to reduce queueing delay and to improve resiliency to faults.

3.4 Message Routing

An important measure of the performance of any message routing algorithm is how well it
solves the permutation routing problem. In permutation routing, each node in a network
is the origin of a single message destined for another node in the network, subject to the
constraint that no two messages have the same destination. The problem is to devise a
distributed algorithm to route the messages to their destinations with the minimum possible
delay, with at most one message being transmitted over an edge at any time. Each instance
of the problem can be viewed as a permutation 7 on the set of nodes, where 7(v) = w means
that the message originating at v has to be delivered to destination w. This part of the

survey is devoted to randomized algorithms for permutation routing.

In message routing algorithms, the normally accepted unit of delay is the time needed
to transmit a single message from a node to its neighbor. The assumption is that the time
taken by the nodes themselves to process individual messages and decide how they are to be
routed is negligible when compared to message transmission delays. This is especially true

if the nodes can do parallel processing.

The overall delay incurred by a permutation routing algorithm is obviously related to
the underlying topology. For instance, the minimum delay in sending a message from one
node to another depends on the length of the shortest path between them. Another type
of delay can occur when implementing permutations: the routing algorithm may determine
that a message needs to be transmitted over an edge that is already in use for transmitting
another message. In this case, the message is often queued up for transmission at a later
time. Such queuing delays should also be included in any measure of the total delay that a

message suffers in transmission from its origin to its destination.

Deterministic permutation routing algorithms have the common drawback that they have

poor worst-case performance. In other words, they behave badly on some specific permuta-

58

www.manaraa.com

1001 1011

000 00 10 10
—
00 0 |
7 111
—
01 1110
0100 0110

Figure 6: A 4-dimensional binary cube.

tions. In this section, we consider two algorithms that use randomization to break up such
input dependencies: Valiant’s [Val82] algorithm for the n-cube, and Aleluinas’s [Ale82] algo-
rithm for shuffle networks. A radically different approach, that of randomizing the intercon-
nections between nodes, is also presented. This technique, when applied to multi-butterfly
networks, has been shown to outperform conventional butterfly networks, particularly with
respect to tolerance to node faults [Upf89, LM89, LLM90].

Message Routing on an n-Cube

Valiant [Val82] proposed the first permutation routing algorithm for an n-cube. His algorithm
implemented any permutation, with high probability, in O(log N) time. An n-cube is a
network architecture shaped like an n-dimensional cube having N = 2™ nodes, and is often

referred to as a (n-dimensional) hypercube.

We assume that each node of an n-cube is identified by an n-bit binary number v from
0 to 2" — 1. A 16-node 4-cube is shown in Figure 6. Two nodes can communicate with each

other if their numbers differ in only one bit position or dimension.

To implement every permutation in O(log N) time with high probability, Valiant’s algo-
rithm requires each message to carry O(log V) bits of additional book-keeping information.
The algorithm can implement both complete as well as partial permutations. No global

synchronization is required (i.e., no help from a central arbiter is needed).

59

www.manaraa.com

For convenience in describing the algorithm, we shall assume that the message originating
at node v is labeled v. The algorithm operates in two phases. In the first phase, a message
u is moved from its origin to a random intermediate destination v without regard for its
ultimate destination w. The intermediate node v is chosen randomly: a fair coin with sides
0 and 1 is tossed for each of the n dimensions, and the message is moved along the edge in
that dimension if a 1 shows up. Clearly, at the end of this procedure, a message may be in

any node of the n-cube with equal probability.

The movement of messages to their actual destinations occurs in the second phase. In
this phase each node that holds a message chooses at random a dimension in which the
message needs to be moved in order to reach its destination, and transmits the message

along that dimension.

The pseudocode of Valiant’s algorithm appears below. In this algorithm, each message
u has an associated set of book-keeping information T,, C {1,...,n}. In the first phase, T,
consists of the set of dimensions along which possible transmissions have not been considered.
In the second phase, T, consists of the set of dimensions along which transmissions remain
to be made in order for u to reach its destination. Also, each node v maintains a set of
queues @Q,(z),1 < ¢ < n, containing messages to be transmitted from v to its neighbor in
the ith dimension. This neighbor, denoted by v||7, is the node whose number is obtained by
toggling the 2th bit of the binary representation of v. The 2th bit of the binary representation

of number v is denoted by v°.

In both phases, each node v maintains a set Loose, of messages that have been received
by v but have not been assigned to any queue. A message u in Loose, with T, = 0 has
v as its destination. The notation “Transmit v” means that for each non-empty @Q,(7), v
transmits the message v at the head of @Q,(:) to node v||¢ and causes u to be added to
Loose,);;. A phase is finished when for all messages u, T, = 0. Valiant’s algorithm is said to

finish successfully if both phases of the algorithm finish.

MessageRoute Phase 1 { (* algorithm used by node v *)
Loose, := {v};
T, := {1,...,n};
FOR f := 1 to F DO {
FOREACH v IN Loose, WITH T, # 0 DO {

Pick : € T,

60

www.manaraa.com

T, := Ty — {i};
Pick a € {0,1};
IF (a = 1){
add u to Q,(¢);
Loose, := Loose, — {u};
} (* end IF *)
} (* end FOREACH *)
Transmit v

} (* end FOR *)

MessageRoute Phase 2 { (* algorithm used by node v *)
FOREACH message u with destination w at v DO
T, := {i|v* # w'}
FOR g := 1 to G DO {
FOREACH v IN Loose, WITH T, # 0 DO {
Pick 1 € T,
T, := T, —{i};
add u to Q,(%);
Loose, := Loose, — {u};
} (* end FOREACH *)
Transmit v

} (* end FOR *)

The algorithm is synchronous in the sense that for each iteration of both phases, all nodes
transmit concurrently, and that all transmitted messages are added to the Loose sets of the
recipients before the recipients begin the next iteration. This restriction, however, can be

relaxed [VB81].

61

www.manaraa.com

Also, note that the two phases run for F' and G iterations, respectively. It is clear that if
G is too small, all messages might not reach their final destinations. Valiant shows that for
both phases to finish successfully with probability greater than 1 — 275", for any constant
S, F and G need be no greater than Cn, where C is a constant that depends on S. In
other words, both phases of the algorithm terminate correctly in O(n) time with probability
1 — 275" for any constant S. The assumption of course is that individual iterations of the

algorithm in both phases run in constant time. Formally:

Theorem 3 For any constant S, there is a constant C such that for F = G = Cn, both

phases of Valiant’s routing algorithm finish with probability greater than 1 — 2757,

In both phases, each message takes a route from an initial node to another node, where a
route is defined as a path in the n-cube where no two edges traverse the same dimension. It
is clear that no route is longer than n. Therefore, the theorem is proved once it is established
that the queuing delays encountered along the routes are O(n) with probability greater than
1— 275,

Queuing delays can occur for a message u only if the route taken by other messages share
common edges with the route taken by w. Analysis shows that for C' > 1, the probability
that any fixed route R shares edges with routes taken by Cn other messages is less than
e~Y"/% in either phase of the algorithm. Therefore, queueing delays are also O(n) provided
each of the routes that intersect R causes no more than a constant delay with similarly high
probability. This part of the proof involves the estimation of the probabilities at the tail end
of a binomial distribution, and is one instance of the application of the powerful Chernoff

bounds analysis technique.

The reader is referred to [Val82] for the detailed probabilistic analysis, but the Chernoff
bounds are repeated here for completeness. If X is the number of heads in n independent

tosses of a coin where the probability of a head in a single toss is p, then Chernoft’s bounds

state that -
Prob[X > m| < <%> e™ "
m
Prob[X > (1+ €)np] < e/
Prob[X < (1— €)np] < e~ <"#/3

for any 0 < € < 1, and m > np.

62

www.manaraa.com

It is interesting to note that Valiant’s results are obtained by deriving bounds on the
probability that two routes intersect and on the probability that two routes share more than
a given number of edges. No assumptions are made about how messages from a queue are
sent. This means that the implementer is free to use any queuing discipline. The algorithm
also has the advantage that each route can be chosen independently of any other route, i.e.,

no global book-keeping is needed.

Message Routing on Finite Degree Interconnection Networks

Valiant’s algorithm is designed for hypercubes, which have the drawback that the degree of
each node increases with the number of nodes in the network. Aleluinas [Ale82] extended
Valiant’s results to the common b-way shuffle networks, where each node has a fixed degree

b, regardless of the size of the network.

For simplicity of exposition, let us assume b divides N, the number of nodes in the net-
work. Then the network interconnections of a b-way shuffle network are as follows: Assuming
the nodes are numbered from 0 to N — 1, they are divided into N/b blocks, where the :th
block consists of nodes 2b,26+1,...,2b+b—1,0 <7 < % — 1. Each node in block z is allowed
to send messages to all nodes whose address modulo % is 7. Note that the communication
paths are directed.

log N

Tog b | between any pair of nodes. However,

In such a network, there exist paths of length |
the best deterministic routing algorithms known require O(log® N) time [LPV81] in the
worst case because an appropriate choice of sources and destinations can cause congestion

on individual communication lines.

Aleluinas [Ale82] uses randomization to overcome this input dependency. As in Valiant’s
algorithm, each node v chooses (with equal probability) an intermediate destination. How-

ever, the entire path to the intermediate destination is chosen by v from among the paths

of length [lfogg]m originating at v. Node v then sends its message along that path to its

intermediate destination. This constitutes the first phase of the algorithm. Once a message

has arrived at its intermediate destination, the intermediate destination picks, uniformly at
log N
loggb
then follows this path. This constitutes the second phase of the algorithm. In both phases,

random, a path of length | | leading from itself to the final destination. The message

the routing algorithm, unlike Valiant’s, must enforce a queuing discipline: there must be
only one output queue per node, and priority must be given to nodes that have traveled

fewer hops, i.e., those that are late.

63

www.manaraa.com

The delay of a message is D; + Dy, where D; is the delay incurred in the :th phase.
Analysis of one of the phases is sufficient, since the two phases mirror each other. There is
statistically no difference between the delay of messages proceeding from distinct sources to
random destinations, and the delay of messages moving to distinct destinations from sources

chosen at random.

Assuming that it takes constant time to send a message, the expected delay of Aleluinas’s

routing algorithm is no more than p, where

b

b= [logy(b—)N

Note that g is O(log N) when b is a constant. This matches the expected delay of Valiant’s

algorithm and is accomplished using a fized number of edges per vertex. In addition, the

probability that the delay exceeds cy for any message is no more than

p—er(1-0(1))

where O(1) — 0 as ¢ — oo. Aleluinas has also analyzed the delay for the more general
situation where multiple messages originate at each node. The reader is referred to [Ale82]
for further details.

Both algorithms discussed above use the technique of distributed input randomization.
By sending messages to randomly selected intermediate destinations, any pockets of conges-
tions arising because of certain unfavorable permutations are avoided. This approach at first
sight, appears to be unnatural as it may send messages which actually may be very close to
their final destination to far away intermediate destinations. However, it is essential. For in-
stance, in Valiant’s algorithm, it can be shown that the second phase alone, though adequate

for most permutations, does not terminate in O(log V) steps for some permutations.

Randomly Wired Multi-Butterfly Networks

Butterfly networks are used in many parallel computers, such as the BBN Butterfly and
Thinking Machine’s CM-5, to provide paths of length log N connecting N inputs to N
outputs. For simplicity, N is usually taken to be a power of 2. The path between any input
and output is of length log N. These inputs and outputs could be processors, memory, or
other resources. An instance of a butterfly network with N = 8 is shown in Figure 7. The
inputs to the network are on the left, and the outputs of the network are on the right. Each

nodejispasswitehysthatyaccepts messages from its neighbors to the left and can send them to

64

www.manaraa.com

Figure 7: An 8-input butterfly network

65

neighboring switches to the right. The interconnections in this butterfly are straightforward:
each node 7 at level [can send messages to nodes ¢ and j at level [+ 1, where 7 is the number
whose binary representation differs from ¢ in the [+ 1st bit position alone. For instance, in
Figure 7, the switch in row 010 at level 0 can communicate with switches in rows 010 and
110 at level 1.

There is a simple greedy algorithm for message routing on a butterfly, best described by
an example. In Figure 7, a message to destination 010 (regardless of the source) is routed as
follows. The first edge the message traverses takes it to a node in the top four rows, so that
the first bit of the row number, in this instance a 0, matches the first bit of the destination
row. The second edge takes the message to a node in a row where the first two bits of the
row number match the first two bits of the destination row, and the last edge takes it to its
correct destination. In general, the :th edge ensures that bit positions 1 through ¢ of the row

that the message reaches match bit positions 1 through 7 of the destination row.

The main disadvantage with butterflies is that they are sensitive to edge or node failures.
Another drawback is the possibility of congestion, which occurs at a node when two incoming
messages need to be sent over the same outgoing edge. A common scheme that provides
some protection against edge failures as well as some reduction in congestion is to make each
edge capable of transmitting d messages concurrently, a technique called dilation, resulting
in a d-dilated butterfly. In other words, each outgoing edge of the butterfly is replaced
by a bundle of d edges. As in the butterfly, however, the shortest-length path between a
given input and a given output still must go through the same sequence of nodes, and an
adversary scheduler can take advantage of this fact to thwart routing algorithms. This is
where randomization of wiring becomes an advantage. Radomized wiring is exploited in
multi-butterfly networks [Upf89, LM89, LLM90]. Multi-butterflies are a generalization of
both the butterfly and the dilated butterfly.

A butterfly network can be considered to be built from splitters, each of which in turn
consist of three blocks of nodes and the edges interconnecting them. In Figure 7, the different

blocks are highlighted using dark shading, and one of the splitters is lightly shaded.

All nodes at level 0 are in the same block. For each block B of M nodes at level [, there
are two blocks in level [+ 1, By, and Biower. Bupper consists of the nodes in level [+ 1
that are in the same rows as the upper M/2 nodes of B, and Bj,,., consists of the nodes in
level [+ 1 that are in the same rows as the lower M/2 nodes of B. A splitter consists of the
blocks B, Bypper and Bioyer, and the edges interconnecting them. The nodes in B are called

the splitter inputs,and . the nodes in Bjoyper and Byppe. are called the splitter outputs. Any

66

www.manaraa.com

edge from B to B, is said to be an up-edge, and any edge from B to Bjoyer 1s said to be

a down-edge.

In a butterfly, each splitter input is connected to exactly one node in the upper output
block, and one in the lower output block. In a d-dilated butterfly, each node in an input
block is connected by d edges to a single node in the upper output block, and by another d

edges to a single node in the lower output block.

A multi-butterfly of multiplicity d, like a d-dilated butterfly, has d up-edges from each
input node of each splitter incident on the upper splitter outputs, and another d down-edges
incident on the lower splitter outputs. In a d-dilated butterfly, all d up (down) edges would
lead to a single node in the upper (lower) output block. In a multi-butterfly, however, the
restriction that all d nodes be connected to the same node is relaxed. Each of the d edges
can be connected to any of the inputs of the corresponding outbut block, subject to the
restriction that any two splitters with inputs at the same level are isomorphic, and that each

node has exactly 2d inputs and 2d outputs.

A randomly wired multi-butterfly network of multiplicity d, on the other hand, is one
in which the individual output node to which an edge of a splitter is connected is chosen
at random from the output blocks, subject only to the constraint that each input node has
exactly d up-edges and d down-edges leading from it, and that each output node is fed by

exactly 2d inputs. It is not necessary for two splitters at the same level to be isomorphic.

The greedy routing algorithm described earlier for butterfly networks can be extended to
multi-butterflies. The edges traversed by a message follow the same logical sequence of up-

and down-edges. However, at each node, a choice of d edges is available in a multi-butterfly.

Routing on multi-butterflies is efficient, as shown by Upfal’s [Upf89] algorithm that imple-
ments P permutations deterministically in O(log N + P) time. Multi-butterflies also provide
protection against failures [LM89], since, unlike the butterfly and dilated butterfly, there
are edge-disjoint and node-disjoint paths between inputs and outputs. Also, in a random-
ized multibutterfly, the exact wiring of the network is unknown, and therefore an adversary
scheduler cannot force excessive queuing delays to occur. Simulation results from Leighton,
Lisinski and Maggs [LLM90] indicate that multi-butterflies may, in practice, perform better
than butterflies and dilated butterflies.

A survey of efficient randomized message routing algorithms for mesh connected comput-
ers, a network architecture not addressed above, is given in [Raj91b]. In the next subsection,

we consider the problem of Byzantine agreement. Besides being another example of how to

67

www.manaraa.com

overcome symmetry via randomization, Byzantine agreement shows how randomization can

lead to reduced communication complexity.

3.5 Byzantine Agreement

In this section we examine the Byzantine Generals problem and present Ben-Or’s [BO83]
randomized distributed solution. The Byzantine Generals problem, known also as “Byzan-
tine agreement,” has received considerable attention in the literature, e.g., [PSL80, LSP82,
Dol82, Rab83, CC85, Per85, Bra85]. This is due primarily to its fundamental relevance in
distributed computation and its surprising complexity given the simplicity of the problem

statement.

The problem concerns the ranks of the Byzantine Generals, who need to coordinate
their rather limited military strategy; that is, they must decide whether to attack or retreat
from encroaching enemy forces. Each general has his or her own opinion on the subject.
Since their armies are widely separated, their strategy must be decided by the exchange
of messages between the generals. Unfortunately, some of the generals are traitors whose
messages cannot be trusted. We may assume, without loss of generality, that the messengers

are loyal since a general with a disloyal messenger may be regarded as a traitor.

Let v be a boolean value and ¥ = 1 — v its complement. The problem of Byzantine
agreement can be stated as follows: Consider a set {P;, P,, ..., P,} of asynchronously
executing processes. Each process P; has a boolean variable z; whose initial value is b;. At
most ¢ of the n processes are faulty. A distributed and symmetric algorithm to be followed

by the correct processes is required such that the following hold on termination:

Condition 1: All correct processes decide on a common value v, where a process “decides
v” by setting a private, write-once register to v. Thus, after deciding, a process can no longer

change its decision.

Condition 2: If all correct processes start with the same initial value v for z;, then their

final decision must be v.

Condition 1 is usually referred to as the “Agreement condition”, and condition 2 the
“Validity condition”. The validity condition eliminates the trivial solution where each loyal

process simply decides on a prearranged value, say 0.

The Byzantine Generals problem translates to one of consensus-building among a set of n

68

www.manaraa.com

completely connected processes, some of which may be faulty. In the synchronous case, where
messages are delivered to their destinations in one computation step, Pease et al. [PSL80]
have shown that there exists an algorithm for Byzantine agreement only if less than one-third
of the total number of processes are faulty. (The problem of Byzantine agreement among
synchronous processes that are not completely connected has also been studied [LSP82] and

constraints on the connectivity required for a solution have been determined.)

For the asynchronous case, Fischer et al. [FLP85] proved that Byzantine agreement is
impossible for deterministic processes, even if the processes are not symmetric and there is
only one faulty process. In particular, deterministic processes are susceptible to nontermi-
nation. As evidenced by Ben Or’s randomized algorithm, this famous “impossibility result”
does not apply to processes that may toss coins; in this case, termination can be guaranteed
with probability 1. Thus, as in Dining Philosophers, guard scheduling, and leader election,

we must once again resort to randomization to solve this distributed computation problem.

We now describe the behavior of the faulty processes, correct processes, and the com-
munication medium. Faulty processes behave unpredictably, perhaps even sending messages
according to some malevolent plan, or at times choosing to send no messages at all. For ex-
ample, in announcing a decision to the correct processes, a faulty process may send different
messages to different processes. However, a faulty process cannot influence communication
between correct processes, and cannot influence the behavior of correct processes. In other
words, it cannot alter or delete messages sent between correct processes, send messages pur-
porting to originate at a correct process, alter the algorithm used by a correct process, or

influence any random choices made by a correct process.

All correct processes are guaranteed to use the same algorithm. The only assumption
made regarding the relative speeds of different processes is that no process will be delayed
indefinitely between computation steps. The communication medium is such that if a correct
process sends a message to another correct process, the message will eventually be delivered
unaltered to the intended recipient. Note that faults in the communication medium can be
modeled by viewing the sender of a message as faulty if the communication medium does

not behave as stipulated.

Ben-Or’s randomized algorithm utilizes the fact that if independent random choices are
made by each process regarding the consensus value, a sufficient number of them will eventu-
ally pick the same value to allow agreement among correct processes. Moreover, agreement
is guaranteed if the number of faulty processes, ¢, is less than one-fifth the total number of

processes«Lhis claim. is.true,even in the presence of an adversary scheduler which chooses

69

www.manaraa.com

the next process to make a step, or controls how long a message is in transit, as the scheduler

cannot influence the outcome of coin tosses made by the processes.

Each correct process P; executes algorithm ByzAgree given below. Variable z;, initialized
to b;, contains the process’s current choice for the consensus value. The algorithm proceeds

in rounds, and the index of the current round is stored in ». Each round has three phases.

In the notification phase, P; outputs the value of z; to all other processes, and then waits
for n — t notification messages. All messages sent in the notification phase are tagged with

the enumeration value N.

In the proposal phase, P; proposes a consensus value from the set {0, 1, ‘?’}, based on
the notification messages just received. It sends its proposal to all other processes, and then
waits for n — ¢ proposals in return. In this phase, messages are tagged with the enumeration

value P.

P; proposes 0 if greater than (n+4t)/2 of the notification messages it has received contain 0.
Similarly, it proposes 1 if greater than (n + ¢)/2 of the notification messages contain 1. If
neither of these is the case, P; proposes ‘?’, a recommendation that the consensus value be
chosen by each process independently by the toss of a coin. Note that P; simply terminates
after broadcasting its proposal if it has made a decision in the previous round. As will be
shown below, if P; decided on value v in round 7, then all correct processes will decide on v

in round r 4+ 1. So it is safe for P; to stop at this point.

Finally, in the decision phase, P; examines the proposals it just received to determine
a new value for z;, which it uses in the next round. Depending on the proposals, P; may
also output this new value of z; to a write-once register (the process has decided). The
significance of the if-statement conditions in the proposal and decision phases is discussed

below.

The round number r is attached to all messages of round r, so the processes can dis-
tinguish between messages from different rounds. A process in a particular round discards
messages it receives from processes in previous rounds, uses messages it receives from pro-
cesses in the same round, and saves messages it receives from process in later rounds for use
during the correct round. Also, since for any round faulty processes may append incorrect
round numbers to their messages, or not send any messages at all, no correct process should
wait for more than n — ¢ messages in a single phase as arrival of only n — ¢ messages is

guaranteed.

70

www.manaraa.com

ByzAgree { (* algorithm for a correct process P, *)
r :=1
decided := FALSE
WHILE TRUE DO {
(* The Notification Phase *)
SEND (N,r,z;) TO all processes

wait for (n-t) notification msgs of the form (N,r,*)

(* The Proposal Phase *)

IF > (n+t)/2 msgs are of the form (N,r,w) for w=0 or w=1 THEN
SEND (P,r,w) TO all processes

ELSE SEND (P,r,?) TO all processes

IF decided THEN stop

ELSE wait for (n-t) msgs of the form (P,r,*)

(* The Decision Phase *)

IF > t msgs are of the form (P, r, w) for w=0 or w=1 THEN {
r; =W
IF > 3t messages are of the form (P, r, w) THEN {

decide w
decided := TRUE}

} ELSE set #; to 0 or 1 with equal probability

71

www.manaraa.com

The following lemmas and theorem, due to Hadzilacos [Had86], provide additional insight

into the behavior of the algorithm, and establish its correctness.

Lemma 1 If a correct process proposes value v in round r, then no other correct process

will propose the value v within the same round.

A process sends a message (P,r,v)if it discovers that more than (n +t)/2 processes have
chosen the value v. At most ¢ of these processes could be faulty. Therefore, more than
(n+1¢)/2—t (i.e., (n — t)/2) correct processes must have chosen v. Thus, a majority of the
correct processes have picked v. For another correct process to propose v in the same round,
a majority of the correct processes must have picked v. Since a correct process sends the

same message to all processes, this is impossible.

Lemma 2 If at the beginning of round r all correct processes P; have the same value v for

x;, then all correct processes will decide v in round r.

In the beginning of a round, each correct process P; sends messages notifying the others
that it has picked value v for #;. Each correct process receives n — ¢t messages, at most ¢ of
which are from faulty processes. Therefore each process receives at least n — 2¢ messages
of the form (N,r,v). Since n > 5t implies n — 2¢ > (n + t)/2, each correct process will

consequently propose v in the proposal phase.

Consider now the proposal phase. In the worst case, a process can receive ¢t proposals
for 7 from the faulty processes, and (n — 2¢) proposals for v from correct processes. Since

(n — 2t) > 3t if n > 5t, each correct process will decide on v.

Lemma 3 If a correct process decides v in round r, then all correct processes will decide v

in round r + 1.

If we can now show that whenever a correct process decides v in round r, all correct
processes propose v at the beginning of round r + 1, then Lemma 3 follows directly from
Lemma 2. For a correct process P; to decide v in round r, it must receive more than 3t
proposals for v, and since at most ¢ of these can be from faulty processes, P; must have
received m proposals for v from correct processes, for some m > 2t. Let us now look at any

other correct process P;.

72

www.manaraa.com

Process P; must, in round r, receive proposals from n — ¢ processes. In other words,
P; receives proposals from all but ¢ processes. Therefore, of the m correct processes that
proposed v to P;, all but ¢ must have had their proposals received by P;. But m > 2t implies
m—t > t, and therefore P; will propose v in the next round. All correct process thus propose
v in round r + 1. From Lemma 2, it follows that all correct processes will decide v in round

r+ 1.

We now have the following correctness result for Ben-Or’s algorithm [Had86].

Theorem 4 Assuming that n > 5t, Ben-Or’s algorithm guarantees Agreement, Validity,

and, with probability 1, termination.

Agreement follows from Lemma 3 and validity from Lemma 2, with » = 1. Consider now
termination. With probability 1, enough correct processes will eventually pick a common
value v to permit at least one correct process P; to decide v in some round r. By Lemma 2,

all correct processes will decide v in the next round.

An upper bound on the expected number of rounds is O(2"), the expected number of
tosses of n coins before all n coins yield the same value. Yet if the number of faulty processes
is O(4/n), then the expected number of rounds is constant. This illustrates another advantage
of tossing coins, since any deterministic solution to the Byzantine Generals problem cannot

reach agreement in less than ¢ + 1 rounds [FL8&2].

As for the per-round message complexity, every process sends a message to every other
process in each round. Thus, assuming that faulty processes do not send more than O(n)

messages each per round, the total number of messages transmitted per round is O(n?).

Ben-Or’s algorithm, along with Rabin’s [Rab83], was one of the first for reaching asyn-
chronous Byzantine agreement, and it remains the simplest. Since then a number of more
elaborate, in terms of efficiency or fault-resiliency, randomized algorithms for the problem
have been developed, including [CC85, Per85, Bra85] (see also [CD89]).

This concludes our survey of distributed randomized algorithms. The next section ad-

dresses some additional important aspects of randomized algorithms, and concludes.

73

www.manaraa.com

4 Additional Topics of Interest and Conclusions

We close our survey with a brief discussion of some additional important topics in randomized
algorithms. It will be seen that most of the topics are more theoretical in nature than the

material in the body of the survey.

Complexity Theory of Randomized Algorithms

A probabilistic Turing machine is a Turing machine with distinguished states

? For each coin-tossing state, the finite control unit

called “coin-tossing states.
specifies two possible next states. The computation of a probabilistic Turing
machine is deterministic except that in coin-tossing states the machine tosses an

unbiased coin to decide between the two possible next states [Gil77].

Asin the classical setting of deterministic and nondeterministic Turing machines, a theory
of computational complexity has been developed for probabilistic Turing machines. For
example, consider the class of decision problems solvable in “polynomial” time. This class
is called P for deterministic Turing machines and NP for nondeterministic Turing machines.
For probabilistic Turing machines, the analogous class is called RP (or simply R by some

writers), standing for Random Polynomial time, and is characterized in [Har87] as follows:

The class RP is defined as the class of decision problems for which there is a
polynomial-time probabilistic Turing machine with the following property. If the

correct answer for an input X is no, the machine says no with probability 1, and
1
E-
Of course, the interest in RP problems stems from the fact that for any given

if the correct answer is yes, the machine says yes with probability greater than

X these possibly erroneous algorithms can be reiterated many times, achieving

a diminishing probability of error.

The class co-RP is defined similarly except now the probabilistic Turing machine must
respond correctly with probability 1 on yes answers, and with probability greater than % on
no answers. For example, by virtue of the probabilistic algorithms presented in Section 2.2,
the problem of primality testing is in co-R P while the complementary problem, compositeness
testing, is in RP. Interestingly, Adleman and Huang [AH87] showed that primality testing

ispalsoring Py therebysputting this problem in the intersection of RP and co-RP.

74

www.manaraa.com

Complexity classes for randomized algorithms extend beyond RP and include the classes
PP (Probabilistic Polynomial time) and BPP (Bounded Probabilistic Polynomial time). For a
problem in PP, the requisite probabilistic Turing machine guarantees the correctness of both
yes and no answers only with probability greater than % In BPP, however, the probability
of error in either a yes or no answer is bounded from above by some constant € < % It is
likely, in fact, that BPP is much weaker than PP. For example, in BPP, the error probability
can be made exponentially small in the length of the input at the cost of only a constant

factor increase in the number of random bits used by the algorithm [CW89].

It is not difficult to see that we have the following hierarchies of complexity classes: P
C RP C NP and RP U co-RP C BPP C PP (but see, e.g., [Gil77, Joh90] for more in-
depth discussions of randomized complexity classes). In words, the former reveals that coin
tossing is at least as powerful as deterministic computation, and nondeterminism is at least as
powerful as coin tossing. It is conjectured that these inclusions are strict. Empirical evidence
includes the fact that, as of now, no one has discovered a polynomial-time randomized

algorithm for any NP-complete problem.

More recently, the quantum Turing machine has been proposed [Deu85] as a quantum
physical analogue of the probabilistic Turing machine. A quantum Turing machine, in its
most general form, produces a random sample from a probability distribution on any given
input. Quantum Turing machines give rise to the new complexity classes Quantum Polyno-
mial time (QP) and Bounded Quantum Polynomial time (BQP) [BV93]. There is evidence
to suggest that it is impossible to simulate a quantum Turing machine with a probabilistic

Turing machine without incurring an exponential slowdown [Fey82].

Theory of Probabilistic Automata

Just as there is a complexity theory of probabilistic algorithms which parallels the complexity
theory of deterministic algorithms, there is a theory of probabilistic automata, e.g., [Rab63,
Sal69, Paz71], which parallels the classical theory of nondeterministic automata. A seminal
paper on probabilistic automata is [Rab63], where Rabin explored finite state probabilistic
automata. He defined the notion of a language accepted by a probabilistic automaton rel-
ative to a cutpoint probability A. One of his key results was that there exists finite state
probabilistic automata that define non-regular languages, even if the probabilities involved
are all rational. Salomaa [Sal69] has expanded upon the work of Rabin to produce a general

theory. of stochastic languages.

75

www.manaraa.com

Probabilistic Analysis of Conventional Algorithms

Probabilistic analysis of a conventional, i.e., deterministic, algorithm starts with the assump-
tion that the instances of a problem are drawn from a specified probability distribution.
Two major applications are the analysis of average-case behavior of sequential algorithms
and data structures (see [VF90] for an excellent survey), and the analysis of approximation
algorithms for coping with intractability of combinatorial optimization problems [GJ79]. For
such problems, the goal is to prove that some simple and fast algorithm produces “good,”
near-optimal solutions. A classic example is Karp’s divide-and-conquer algorithm for the
Traveling Salesman problem in a plane [Kar86]. Bin packing is another problem for which

very good approximation algorithms have been discovered.

Randomized Parallel Algorithms

As with sequential and distributed algorithms, the performance of parallel algorithms can be
improved through the introduction of randomized behavior, i.e., coin tossing. A standard
model of computation for parallel algorithms is the PRAM, a multi-processor architecture
where each processor has random access to a shared memory. PRAM is actually a family of
models including CRCW (memory may be concurrently read and written), CREW (memory
may be read concurrently but writes are exclusive), and EREW (all reads and writes of

memory are exclusive).

The benefits of randomization in parallel algorithms can perhaps be best illustrated by
the results of Vishkin [Vis84] for the following problem: Given a linked list of length n,
compute the distance of each element of the linked list from the end of the list. The problem
has a trivial linear-time sequential algorithm but Wyllie [Wyl79] conjectured that there is
no optimal speed-up parallel algorithm for n/log n processors. Vishkin showed that such
optimal speed-up can be obtained via randomization by exhibiting a randomized parallel
algorithm for the problem that runs in O(n/p) time using p < n/(lognlog* n) processors on
an EREW PRAM. (Note that for all practical purposes, the poly-logarithmic term log*n

can be viewed as a constant.)

Other examples of fast randomized parallel algorithms include the sorting algorithm of
Reischuk [Rei81], the algorithm for subtree isomorphism by Miller and Reif [MR89], as
well as the numerous algorithms described in the annotated bibliography. Miller and Reif’s
algorithm uses O(log n) time and O(n/log n) processors, and was the first polylog parallel

76

www.manaraa.com

algorithm for the subtree isomorphism problem.

Sources of Randomness and their Impact on Randomized Algo-

rithms

Throughout this survey we assumed that a randomized algorithm had the ability to toss
unbiased coins. Clearly, this is a key assumption: any bias in the coin tosses can adversely
affect the accuracy and performance of the algorithm. In this section we describe research
aimed at reducing the number of truly random bits a randomized algorithm requires, and

the usefulness of “weak sources of randomness.”

We also consider means of generating
bit strings that have the mathematical properties of truly random strings. Our treatment
of these topics is mainly bibliographic in nature and we refer the interested reader to the

appropriate references for detailed coverage.

Let A be a randomized algorithm that when supplied with n truly random bits, produces

results with a fixed error probability €. The following two questions naturally arise:

1. Is it possible to reduce the error probability of A through a small increase in the
number of truly random bits that .4 has at its disposal?

2. Can A maintain its error probability when the random bits come from a “weak” or

imperfect source of randomness?

These two problems, which are commonly referred to as deterministic amplification and sim-
ulating probabilistic algorithms by weak random sources, have received considerable attention

in the recent literature and are discussed next.

Deterministic Amplification

Let A be a randomized algorithm that uses ¢(n) random bits on an input of length n. One
obvious way of boosting the accuracy of A is to run it repeatedly with independently chosen
g(n)-bit patterns. However, this method “wastes randomness” as each random bit is used
only once and then discarded. It turns out that A can be deterministically amplified using

fewer random bits if certain types of ezpander graphs can be constructed.

7

www.manaraa.com

In [KPS85], Karp, Pippenger, and Sipser present the first example of deterministic am-
plification. Using expander graphs, they show how the error probability of a randomized
algorithm can be reduced to n™¢, for some constant ¢. Their technique requires no additional

random bits. Let us now look at expander graphs more carefully.

An (I,7,d, k)-ezpander is a bipartite graph from L to R such that

1. |[L| =1land |R| =,
2. the degree of all nodes in L is d, and

3. every subset of k nodes in L is connected to more than § nodes in R.

In general, given values of l,r,d,k it is easy to prove or disprove the existence of an
(I,r,d, k)-expander through probabilistic methods [ES74] or other non-constructive argu-
ments. For example, the reader may enjoy proving, using a probabilistic argument, that
there exists (m!°¢™,m, 2log” m, m)-expanders for any m [Sip88]. Replacing m by 2¢ certifies

the existence of (2‘12,2‘1, 2¢%,2%)-expanders.

Sipser [Sip88] reduces the deterministic amplification problem to a graph theoretic prob-
lem involving expander graphs. Since his reduction requires explicit construction of ex-
panders, let us assume that we have a method for explicitly constructing, for any given ¢, a
(2‘12,2q,2q2,2q)—expander. Label the left nodes in this graph with bit strings from ¥ and
the right nodes with bit strings from %9, where ¥ = {0,1}. Call such an expander graph G,.

Let B be the amplifying algorithm for A that uses ¢*(n) random bits and operates as
follows. It generates a ¢*(n)-bit random sequence o € %’ (™) and, using o, generates a
multiset B(o) C %9, For each ¢(n)-bit a € B(c), the algorithm B runs A on « internally.
The multiset B(c) is generated using the expander graph G, (also called a disperser
in [CW89]).

The efficiency of algorithm B depends on the ability to efficiently construct the multiset
of neighbors of o: for a given o, clearly one should be able to generate, in polynomial time,
each edge (o,a). Hence the earlier assumption about efficiently constructing the expander
Go(n)-

The accuracy of B is related to certain “expansion properties” of Gy(,) (see Definition 2.2

in [CW89] for an exact formulation of these properties). Under the hypothesis that Gy

can be explicitly constructed, any randomized algorithm A utilizing ¢(n) random bits with

78

www.manaraa.com

error probability %, can be converted into another algorithm B that uses ¢*(n) bits and has
error probability 2-(¢’(")-a(n) [Sip88]. The reduction in the error probability follows from the
properties of the expander graph. It can also be shown that random bipartite multigraphs

are sufficiently expanding.

While Sipser’s reduction assumes the constructability of expander graphs, Ajtai et al. [AKS87]
show how to explicitly construct expanders for deterministic amplification. Using these
multigraphs, Cohen and Wigderson [CW89] prove that the error probability of any RP or
BPP algorithm can be made exponentially small in the size of the input, with only a con-
stant factor increase in the number of random bits used by the algorithm. They also consider

simulations of these algorithms with weak sources of random numbers.

Simulating Probabilistic Algorithms by Weak Random Sources

Since most physical sources of randomness suffer from correlation, it is natural to consider
imperfect or weak sources of randomness. Such sources are called semi-random sources
in [SV86]. In this model, each bit of the output is produced by an adversary by the flip of a
coin of variable bias. The adversary can look at the previously output bits, and use these to
set the bias in the coin. The bias, which helps model correlation among bits, is constrained
to be between two limits, § and (1 — §).

It has been shown that if a problem can be solved by a polynomial-time Monte Carlo
algorithm that has access to a true source of randomness, then the same problem can be
solved using an arbitrarily weak semi-random source [VV85]. In [Vaz87], efficient algorithms
for using semi-random sources are presented and a technique for producing a quasi-random

sequence at an optimal rate, using two semi-random sources, is described.

In [Zuc90], Zuckerman exhibits a pseudo-random generator that depends only on a weak
random source called a é-source. A é-source, unlike a semi-random source, is asked only
once for R random bits and the source outputs an R-bit string such that no string has a
probability more than 27°F of being output, for some fixed § > 0. Zuckerman [Zuc91] also
shows how to simulate BPP and approximation algorithms in polynomial time using the
output from a é-source. Another notion of an imperfect source of randomness is introduced

in [LLS87], where an imperfect source is modeled by a discrete control process.

79

www.manaraa.com

Pseudo-random Number Generators

In the absence of a true source of randomness, randomized algorithms almost always rely on
pseudo-random number generators (PRGs) as their source of random bits. The importance
and widespread use of PRGs is exemplified by a recent article in the New York Times which
declares that:

Mathematical “models” designed to predict stock prices, atmospheric warming,
air-plane skin friction, chemical reactions, epidemics, population growth, the out-
come of battles, the location of oil deposits and hundreds of other complex mat-
ters increasingly depend on a statistical technique called Monte Carlo Simulation,
which in turn depends on a reliable and inexhaustible source of random numbers
[“Coin-Tossing Computers Found to Show Subtle Bias,” by M.W. Browne, New
York Times, Tue., Jan. 12, 1993].

Browne goes on to point out the danger inherent in using PRGs, which was brought to
light in a recent paper by Ferrenberg, Landau, and Wong [FLW92|. This paper recounts how
the authors were puzzled when a simple mathematical model of the behavior of atoms in a
magnetic crystal failed to give expected results. They traced the error to the PRG used in
the simulation. Upon further investigation, they demonstrated that five of the most widely
used PRGs, all of which passed a sizable battery of tests designed to test their randomness,

in fact produce correlated pseudo-random numbers.

PRGs work as follows. They perform a deterministic process on a short, random seed to
produce a much larger, pseudo-random string that serves as a substitute for a truly random
string of the same size. Thus, a PRG can be thought of as a means to minimize the number

of truly random bits used by an algorithm.

Much research has been conducted on conserving the number of random bits used by
specific PRG algorithms. An analysis justifying the use of pseudo-random substitutes for true
random number generators in a randomized primality tester and a probabilistic algorithm for
computing square roots is given in [Bac91]. There Bach shows that an exponentially small
error can be obtained for these two problems by increasing the number of random bits by
a constant factor. Karloff and Raghavan [KR88] study pseudo-random substitutes that use

small seeds for purely random choices in sorting, selection and oblivious message routing.

In their seminal paper, Blum and Micali [BM84] introduced the notion of cryptographi-

callyssecure pseudo-randemynumber generators. A PRG is cryptographically secure if given a

80

www.manaraa.com

small segment of its output, all subsequent output cannot be predicted in polynomial time.
Otherwise, a PRG is said to be predictable.

A number of PRGs, both predictable and secure, have been studied in the literature.
Ajtai and Wigderson [AW89] have demonstrated a family of PRGs that appear random
to any polynomial-size logic circuit of constant depth and unbounded fan-in. Such PRGs
can be substituted for random number generators in applications such as building simple

approximations to complex boolean functions [Val84a].

A strong connection exists between cryptographically secure PRGs and one-way func-
tions. A one-way function F(z) is a function that is easily computed, but given F(z), it
should not be possible to easily recover z, either with a small circuit or with a fast algorithm.
In [ILL89], the existence of one-way functions is shown to be necessary and sufficient for the
existence of pseudo-random generators, and algorithms for pseudo-random generators that

use one-way functions are provided.

Blum et al. [BBS86] present two pseudo-random sequence generators that from small
seeds, generate long well-distributed sequences. The first, the 1/ P generator, is completely
predictable from a small segment of its output. The second, the z*(modN) generator, is
cryptographically secure as its sequence is polynomial-time unpredictable. The z*(modN)

generator is based on the hardness of the quadratic residuacity problem.

Babai, Nisan and Szegedy [BNS89] obtain a lower bound for the bit complexity of com-
puting functions of n variables, where the i** variable resides on processor . The commu-
nication mechanism considered is a shared blackboard. Using this bound, they developed
algorithms that generate, in polynomial time, pseudo-random sequences of length n from a
seed of length exp(c y/logn). These pseudo-random sequences cannot be distinguished from
truly random sequences by any logspace Turing machine. Hastad [Has90] has extended the
results of [ILL89] to the uniform case.

As noted in [IZ89], cryptographically secure PRGs, though theoretically elegant, have
several practical problems: they depend on the unproven assumption about the one-wayness
of some function, become useful only asymptotically, and are inefficient when implemented.
By contrast, the most commonly used PRGs, which typically are based on linear-congruential
generators and are not cryptographically secure, do quite well in practice. Impagliazzo
and Zuckerman [IZ89] give a theoretical basis to this empirical finding. They prove that
two very simple pseudo-random number generators, which are minor modifications of the

linear-congruential generator and the simple shift register generator, are good for amplifying

81

www.manaraa.com

the correctness of probabilistic algorithms. They also introduce a class of PRGs based on

universal hashing functions. Some consequences of the existence of PRGs are discussed

in [ALIS7].

While most of the work in this area has concentrated on generation of pseudo-random
strings, in [GGMS86], Goldreich, Goldwasser, and Micali address the issue of generating
random functions. They introduce a computational complexity measure of the randomness of
functions. Assuming the existence of one-way functions, a pseudo-random function generator

is presented.

Sampling From a Distribution

There exists a large class of algorithms that are designed around the concept of a random
walk. These algorithms, which borrow heavily from techniques in statistical physics, use
random walks to facilitate random sampling for approximating hard counting problems. For
example, Jerrum and Sinclair [JS89] give a randomized approximation scheme for approxi-
mating the permanent of a matrix by relating the problem to that of uniformly generating
perfect matchings in a graph. The matching problem is solved by a Markov chain whose

states are matchings in the graph.

In general, the construction of small sample spaces that have some randomness properties
is of major theoretical and practical importance. For example, in some applications it may be
desirable that in a string selected at random from a sample space, the probability distribution
induced on every k bit locations be uniform. This property of random bit strings is known
as k-wise independence and its use in the derandomization of probabilistic algorithms is
discussed below. In [AGHP90], three simple constructions of small probability spaces on n

bits for which any & bits are almost independent are presented.

The general study of random walks — a topic not covered by this survey — has made
an impact on several areas of algorithm design such as space-bounded algorithms, on-line
algorithms, and amplification of randomness. For a study of this area, and the associ-
ated background in Markov chains and techniques for proving rapid mixing — informally, a

Markov chain is rapidly mizing if it converges to its stationary distribution in a short time —

the reader is referred to [KL85, Bro86, DLMV88, JS89, Brog89, KLM89, DFK91, BCD*89].

82

www.manaraa.com

Derandomization

A flurry of activity has recently emerged around the algorithmic design technique of deran-
domization: the act of taking an efficient randomized algorithm and removing the coin flip-
ping to obtain an deterministic algorithm. The beauty of derandomization is that the result-
ing deterministic algorithm retains the simplicity inherent to randomized algorithms, often
outperforms all previously known deterministic algorithms (e.g., [CF90, Aga90a, Aga90b]),
and is always correct. This last point is particularly appealing if the randomized algorithm

that gave rise to the deterministic one is of the Monte Carlo variety.

The idea of derandomization can be explained as follows [NN90]. Consider any random-
ized algorithm A. One can associate a probability space (2, P) with A, where Q is the
sample space and P is some probability measure corresponding to the probabilistic choices
that A makes during execution. Let A (I,w) denote an execution of 4 on input instance I
in which A randomly chooses w from . Point w is called a good point for input instance
Iif A(I,w) computes the correct solution. A derandomization of A means searching Q for
a good point w with respect to a given input instance I. Upon turning up such a point w,
the algorithm A (I, w) is now deterministic and guaranteed to find the correct solution. The
catch is, however, that the sample space is generally exponential in size, rendering exhaustive

search infeasible.

Karp and Wigderson [KW85] have devised a technique, based on the concept of k-wise
independence, that can potentially avoid searching exponentially large sample sizes. A string
of bits is said to be k-wise independent if any k of the bits in the sequence are mutually
independent. Therefore, if the probabilistic choices of a given randomized algorithm are
bit-strings of length n and each choice is only required to exhibit k-wise independence, then
a sample space of size O(n"*) suffices. Furthermore, when k is a constant, this sample space
can be exhaustively searched for a good point (even in parallel) in polynomial time. Karp
and Wigderson, in the same paper, take advantage of k-wise independence to derive a fast

parallel algorithm for the maximal independent set problem.

Another approach to derandomization is the method of conditional probabilities [Spe88],
which was originally introduced with the aim of converting probabilistic proofs of existence
of combinatorial structures into deterministic algorithms that can actually construct these
structures. Applications of the method of conditional probabilities to derandomization in-

clude problems in combinatorial optimization [Rag88| and parallel algorithms [MNN89].

83

www.manaraa.com

On the Future of Randomized Algorithms

These days, randomized algorithms are appearing in the literature almost as often as con-
ventional algorithms. It is safe to say that there are at least several hundred randomized
algorithms that have already been published, and dozens more are being discovered each
year. We expect this trend to continue since, as we have tried to demonstrate in this sur-
vey, the benefits of coin tossing are many: efficiency, conceptual simplicity of the resulting
algorithms, overcoming impossibility, etc. Specifically, we expect to see a steady stream of
randomized algorithms in the areas of computational geometry, computational biology, graph
and number theory, cryptography, robotics, design automation, operating systems (paging,

task scheduling, load balancing, etc.), parallel computing, and distributed computing.

Acknowledgements

We would like to thank the anonymous referees for their critical reading of the manuscript.
Their many comments and suggestions, including a number of important pointers to the
literature, substantially helped to improve the quality of the survey. We are also grateful
for valuable interactions with Donna Albertus, Lauren Cowles, Gudjon Hermannsson, Ker-I
Ko, Joe Mitchell, Steve Skiena, and Joel Spencer. Finally, we would like to acknowledge
the readers of comp.theory who responded to a call-for-comments on an earlier draft of
the paper, including Olivier Devillers, Martin Dietzfelbinger, Philippe Flajolet, Dipankar
Gupta, George Havas, Martin Huehne, Danny Krizanc, Bohdan Majewski, Stanley Selkow,
and Mark Weiss.

References

[AA8S] N. Alon and Y. Azar. The average complexity of deterministic and random-
ized parallel comparison-sorting algorithms. SIAM Journal on Computing,
17:1178-1192, 1988. Even the average-case behavior of randomized parallel
comparison-sorting algorithms is shown to be no better than the worst-case

behavior of their deterministic counterparts.

84

www.manaraa.com

[AAG'89] K. Abrahamson, A. Adler, R. Gilbart, L. Higham, and D. Kirkpatrick. The
bit complexity of randomized leader election on a ring. SIAM Journal on
Computing, 18(1):12-29, Feb 1989. Under various assumptions about global
knowledge, the bit complexity of leader election on asynchronous unidirec-

tional rings is studied.

[AAK90] A. Aggarwal, R. J. Anderson, and M.-Y. Kao. Parallel depth-first search in
general directed graphs. SIAM Journal on Computing, 19(2):397-409, 1990.
This paper gives the first randomized NC algorithm for depth-first search in
a general directed graph.

[AASS90] P. K. Agarwal, B. Aronov, M. Sharir, and S. Suri. Selecting distances in
the plane. In Proc. Sizth Ann. ACM Symp. on Computational Geometry,
pages 321-331, Berkeley, CA, June 1990. The authors present a randomized
algorithm for computing the kth smallest distance in a set of n points in the
plane based on a parametric search technique of Megiddo. The algorithm’s

expected time is O(n*31og®/* n).

[ABIS86] N. Alon, L. Babai, and A.Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. Journal of Algorithms, 7:567-583,
1986. An independent set in a graph is a set of vertices, no two of which are
adjacent. A mazimal independent setis an independent set that is not properly
contained in any other independent set. The authors present a simple random-
ized (Las Vegas) parallel algorithm for this problem. On an EREW-PRAM,
their algorithm uses |E| processors with expected running time O(log® n), for a
graph with n nodes and |E| edges. Motivated by [KW85], they also describe a
derandomization technique to convert any Monte Carlo parallel algorithm that
uses k-wise independent random choices into a deterministic parallel algorithm
without loss of time and a polynomial increase in the number of processors for

any constant k.

[AdI91] L. M. Adleman. Factoring numbers using singular integers. In Proc. 23rd
Ann. ACM Symp. on Theory of Computing, pages 64-71, New Orleans, LA,
May 1991. Generalizing earlier work of Coopersmith, Odlyzko and Schroep-
pel, Adleman puts forward an efficient randomized algorithm for factoring the

integers.

85

www.manaraa.com

[AES90] P. K. Agarwal, H. Edelsbrunner, and O. Schwarzkopf. Euclidean minimum
spanning trees and bichromatic closest pairs. In Proc. Sizth Ann. ACM Symp.
on Computational Geometry, pages 203-210, Berkeley, CA, June 1990. The au-
thors present a randomized algorithm to compute a bichromatic closest pair in
expected time O((nm log nlog m)** 4 mlog®n+nlog®m) in Euclidean three-
space, which yields an O(N*/3 log‘l/3 N) expected time algorithm for computing

a Euclidean minimum spanning tree of N points in Euclidean three-space.

[AES92] N. Alon, P. Erdés, and J. H. Spencer. The Probabilistic Method. John Wiley
and Sons, 1992. This paper describes the Probabilistic Method as developed
by Paul Erdos and its applications in Discrete Mathematics and Theoretical

Computer Science.

[Aga90a] P. K. Agarwal. Partitioning arrangements of lines I: An efficient determin-
istic algorithm. Discrete Computational Geometry, 5:449-483, 1990. Using
derandomization techniques due to Chazelle and Friedman [CF90], Agarwal
obtains a deterministic algorithm that, given a set £ of n lines and a param-
eter 1 < r < n, partitions the plane into O(r?) triangles, each of which meets
at most O(n/r) lines of £. He shows that the algorithm is optimal up to a
polylog factor.

[Aga90b] P. K. Agarwal. Partitioning arrangements of lines II: Applications. Discrete
Computational Geometry, 5:533-574, 1990. Agarwal uses his partitioning al-
gorithm of [Aga90a], which he derived through derandomization, to obtain
efficient algorithms for a variety of problems involving line or line segments in
the plane (e.g., computing incidence between points and lines, implicit point
location, and spanning trees with low stabbing number). These algorithms are
deterministic, faster than previously known algorithms, and optimal up to a

polylog factor in many cases.

[AGHP90] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple construction of
almost k-wise independent random variables. In Proc. 31st Ann. IEEFE Symp.
on Foundations of Computer Science, pages 544-553, 1990. Three simple
constructions of small probability spaces on n bits for which any k bits are

almost independent are presented in this paper.

[AH87] L. M. Adleman and M. A. Huang. Recognizing primes in polynomial time. In
Procad9thyAnn. ACM Symp. on Theory of Computing, pages 462-471, 1987.

86

www.manaraa.com

The probabilistic algorithms of Rabin [Rab76] and Solovay and Stassen [SS77]
placed the problem of compositeness testing in the randomized complexity
class RP, and thus the problem of primality testing in co-RP. Adleman and
Huang show that primality testing is also in RP, thereby putting this problem
in the intersection of RP and co-RP.

[AH8S] L. M. Adleman and M. A. Huang. Recognizing primes in random polynomial
time. Technical report, University of Souther California, September 1988. The
authors present a Las Vegas algorithm that looks for witnesses to composite-

ness as well as those for primality.

[AH90] J. Aspnes and M. Herlihy. Fast randomized consensus using shared memory.
Journal of Algorithms, 11(3), 1990. An expected O(n*) operations are needed

for the solution presented.

[AH91] W. Aiello and J. Hastad. Perfect zero-knowledge languages can be recognized
in two rounds. Journal of Computer and System Sciences, 42:327-345, 1991.
This paper shows that if L has a perfect zero-knowledge proof (see [FGM*89]
for a definition), then L has a two-round interactive proof if the verifier (of this
new IP proof) is permitted a small probability of error in accepting a string
w as being in a language L. An earlier version of this paper appeared in Proc.
28th Ann. IEEE Symp. on Foundations of Computer Science, 1987.

[AKS87] M. Ajtai, J. Komlés, and E. Szemerédi. Deterministic simulation in
LOGSPACE. In Proc. 19th Ann. ACM Symp. on Theory of Computing, pages
132-140, 1987. The authors present an explicit construction of multigraphs
based on expanders for deterministic amplification. Using these multigraphs,
Cohen and Wigderson [CW89] show that the error probability of any RP or
BPP algorithm can be made exponentially small in the size of the input, with
only a constant factor increase in the number of random bits used by the

algorithm.

[Ale82] R. Aleliunas. Randomized parallel communication (preliminary version). In
Proc. First Ann. ACM Symp. on Principles of Distributed Computing, pages
60-72, 1982. This paper presents a randomized algorithm for packet delivery
that delivers a set of n packets traveling to unique targets from unique sources
in O(logn) expected time on a finite degree interconnection network of n

Processors.

87

www.manaraa.com

[A1I87] E. W. Allender. Some consequences of the existence of pseudorandom genera-
tors. In Proc. 19th Ann. ACM Symp. on Theory of Computing, pages 151-159,
1987. Connections between pseudorandom generation, Kolmogorov complex-

ity, and immunity properties of complexity classes are described.

[ALM92] S. Arora, C. Lund, R. Motwani, M. Sundar, and M. Szegedy. Verification
and hardness of approximation problems. In Proc. 83rd Ann. IEEE Symp. on
Foundations of Computer Science, pages 14-23, 1992. This paper extends the
results in [AS92] to show that unless P = NP, the size of the maximum clique

cannot be approximated within a factor of n¢ for some € > 0, unless P = NP.

[AM93] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed
dimensions. In Proc. Fourth Ann. ACM-SIAM Symp. on Discrete Algorithms,
pages 271-280, Austin, TX, January 1993. A randomized algorithm for ap-
proximate nearest neighbor searching is given. Consider a set S of n points in
d-dimensional Euclidean space, where d is a constant independent of n. The
authors produce a data structure, such that given any query point, a point
of S will be reported whose distance from the query point is at most a fac-
tor of (1 4 €) from that of the true nearest neighbor. Their algorithm runs in
O(log® n) expected time and requires O(n log n) space. The data structure can

be built in O(n?) expected time. The constant factors depend on d and e.

[AN93] N. Alon and M. Naor. Coin-flipping games immune against linear-sized coali-
tions. SIAM Journal on Computing, 22(2):403-417, 1993. The authors consider
the problem of distributed coin-flipping and leader-election algorithms where
every process has complete information. They show that for every constant
¢ < 1 there are protocols involving n processes in which no group of cn pro-
cesses can influence the outcome with probability greater than K¢, where K

is a universal constant.

[Ang80] D. Angluin. Local and global properties in networks of processors. In Proc.
12th Ann. ACM Symp. on Theory of Computing, pages 82-93, 1980. The
capabilities of networks containing nodes with non-unique names are analyzed.
It is shown that there exist networks in which it is not possible to elect a
leader (For example, in a ring with four nodes). Other computations, such as

determining topology, are also considered.

88

www.manaraa.com

[AS89] C. Aragon and R. Seidel. Randomized search trees. In Proc. 30th Ann. IEEE
Symp. on Foundations of Computer Science, pages 540-545, 1989. A simple
randomized algorithm for maintaining balance in dynamic search trees is pre-
sented. The expected time for an update is O(logn) on a tree with n nodes,

and involves fewer than two rotations to re-balance the tree.

[AS91a] P. K. Agarwal and M. Sharir. Counting circular arc intersections. In Proc.
Seventh Ann. ACM Symp. on Computational Geometry, pages 10-20, North
Conway, NH, June 1991. Two randomized algorithms are presented. The first
counts intersections in a collection of n circles in expected time O(n®/2+<), for
any € > 0. The other counts intersections in a set of n circular arcs in expected
time O(n%*¢), for any € > 0. If all arcs have the same radius, the expected

time can be improved to O(n®/%%¢).

[AS91Db] F. Aurenhammer and O. Schwarzkopf. A simple on-line randomized al-
gorithm for computing higher order Voronoi diagrams. In Proc. Seventh
Ann. ACM Symp. on Computational Geometry, pages 142-151, North Con-
way, NH, June 1991. They present a simple on-line randomized algorithm
that can compute the order-k Voronoi Diagram for n sites in expected time

O(nk?log n + nklog®n) and optimal space O(k(n — k)).

[AS92] S. Arora and S. Safra. Probabilistic checking proofs; a new characterization
of NP. In Proc. 33rd Ann. IEEE Symp. on Foundations of Computer Science,
pages 2-11, 1992. The class NP is shown to be the class of languages L for
which membership can be verified probabilistically in polynomial time using

a logarithmic number of random bits and sub-logarithmic number of queries.

[Auw89] B. Auwerbuch. Randomized distributed shortest path algorithms. In Proc.
21st Ann. ACM Symp. on Theory of Computing, pages 490-500, 1989. An
algorithm that requires O(D'*€) time and O(E'*¢) messages, for any € > 0, is
presented, where F is the number of edges in the graph and D is its diameter.
The lower bounds are Q(D) and Q(FE) respectively. The algorithm is extended

to determine shortest paths when the edges have weights.

[AUYS83] A. Aho, J. Ullman, and M. Yannakakis. On notations of information transfer
in VLSI circuits. In Proc. 15th Ann. ACM Symp. on Theory of Computing,
pages 133-139, 1983. This paper presents an interesting result on probabilistic

algorithmsythat admit no error: the communication complexity (measured in

89

www.manaraa.com

bits) of the deterministic solution can be no more than the square of the

message complexity of any randomized solution.

[AVT79] D. Angluin and L. G. Valiant. Fast probabilistic algorithms for Hamiltonian
circuits and matching. Journal of Computer and System Sciences, 18(2):82-93,
1979. The authors present two algorithms with O(n(logn)?) running time for
Hamiltonian circuits and an O(nlogn) algorithm to find perfect matching in

random graphs with at least ¢ nlog n edges, where c is any positive constant.

[AWS89] M. Ajtai and A. Wigderson. Deterministic solution of probabilistic constant
depth circuits. In S. Micali, editor, Advances in Computing Research 5: Ran-
domness and Computation, Greenwich, CT, 1989. JAI Press. A family of
pseudo-random number generators which appear random to any polynomial
size logic circuit of constant depth and unbounded fan-in is demonstrated. Such
pseudorandom generators can be substituted for random-number generators

in applications such as building simple approximations to complex boolean
functions [Val84a].

[AW92] J. Aspnes and O. Waarts. Randomized consensus in O(nlog®n) operations
per processor. In Proc. 33rd Ann. IEEE Symp. on Foundations of Computer
Science, pages 137-146, 1992. An asynchronous algorithm is presented that
achieves randomized consensus using O(nlog” n) read and write operations on
shared-memory registers. This improves on the O(n?logn) worst-case com-

plexity of the best previously-known algorithm.

[Bab85] L. Babai. Trading group theory for randomness. In Proc. 17th Ann. ACM
Symp. on Theory of Computing, pages 421-429, 1985. This paper developes
interactive proofs to classify certain group-theoretic problems and introduces

an alternative notion of interactive proofs for complexity-theoretic analysis.

[Bab91] L. Babai. Local expansion of vertex-transitive graphs and random generation
in finite groups. In Proc. 23rd Ann. ACM Symp. on Theory of Computing,
pages 164-174, New Orleans, LA, May 1991. Babai presents a Monte Carlo
algorithm that constructs an efficient nearly uniform random generator for

finite groups in a very general setting.

[Bac91] E. Bach. Realistic analysis of some randomized algorithms. Journal of Com-

puter and System Sciences, 42:30-53, 1991. Bach’s analysis justifies the use of

90

www.manaraa.com

pseudo-random substitutes for true random-number generators in a random

primality tester and a probabilistic algorithm for computing square roots.

[BB8§] G. Brassard and P. Bratley. Algorithmics: Theory and Practice. Prentice-Hall,
1988. This book contains a very nice chapter on probabilistic algorithms for

a variety of problems such as numerical integration, sorting, and set equality.

[BBC*88] P. Beauchemin, G. Brassard, C. Crépeau, C. Goutier, and C. Pomerance. The
generation of random numbers that are probably prime. Journal of Cryptology,
1(1):53-64, 1988. The authors make two intriguing observations on Rabin’s
probabilistic primality test [Rab76], the subject of Section 2.2 of this survey.
The first is a provocative reason why Rabin’s test is so good. It turns out that
a single iteration of his algorithm has a non-negligible probability of failing
only on composite numbers that can actually be split in expected polynomial
time. Therefore, factoring would be easy if Rabin’s test systematically failed
with a 25% probability on each composite integer (which, of course, it does
not). The authors also investigate the question of how reliable Rabin’s test is
when used to generate a random integer that is probably prime, rather than

to test a specific integer for primality.

[BBP91] J. Boyar, G. Brassard, and R. Peralta. Subquadratic zero-knowledge. In
Proc. 32nd Ann. IEFE Symp. on Foundations of Computer Science, pages
69-78, 1991. This work reduces the communication complexity of the boolean
Satisfiability problem of size n to O(n't* + k \/EHE") bits while providing
a probability of undetected cheating not greater than 27*, where ¢, tends to

zero as n tends to infinity.

[BBS86] M. Blum, L. Blum, and M. Shub. A simple and secure pseudo-random num-
ber generator. SIAM Journal on Computing, 15:364-383, 1986. Two pseudo-
random sequence generators are presented which, from small seeds, generate
long well-distributed sequences. The first, 1/P generator, is completely pre-
dictable from a small segment of its output. The second, z> (mod N) genera-
tor, is cryptographically secure as its sequence is polynomial-time unpredictable

(if quadratic residuacity problem is indeed hard).

[BC86] G. Brassard and C. Crépeau. Zero-knowledge simulation of boolean circuits.

In Advances in Cryptology—-CRYPTO 86, Lecture Notes in Computer Science,

91

www.manaraa.com

Vol. 263, pages 223-233. Springer-Verlag, 1986. An important result by Gol-
dreich, Micali, and Wigderson in the design of cryptographic protocols asserts
that if one-way functions exit then every language in NP has a minimum-
knowledge confirming interactive proof. This paper proves a similar result un-

der the assumption that certain number-theoretic computations are infeasible.

[BCC88| G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowl-
edge. Journal of Computer and System Sciences, 37:156-189, 1988. The au-
thors present a generalized perfect zero-knowledge interactive proof scheme
that is valid for any problem in NP. Contains protocols that allow “Peggy,
the prover,” to convince “Vic, the verifier,” that she has a certifiable secret
without disclosing it. The authors use a notion they call bit-commitment, to

accomplish these minimum disclosure proofs.

. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, an . Tompa. Two

BCD*89 A. Borodin, S. A. Cook, P. W. D d, W.L. R d M. T T
applications of inductive counting for complementation problems. STAM Jour-
nal on Computing, 18(3):559-578, June 1989. A probabilistic algorithm for s-¢

connectivity in undirected graphs is presented.

[BCF*91] L. Babai, G. Cooperman, L. Finkelstein, E. Luks, and A. Seress. Fast Monte
Carlo algorithms for permutation groups. In Proc. 23rd Ann. ACM Symp.
on Theory of Computing, pages 90-100, New Orleans, LA, May 1991. Nearly
optimal randomized algorithms, of the Monte Carlo variety, are presented for

basic permutation group manipulation.

[BCWS80] M. Blum, A. Chandra, and M. Wegman. Equivalence of free boolean graphs
can be decided probabilistically in polynomial time. Information Processing
Letters, 10:80-82, 1980. The technique used is reduction to a restricted case
of the Straight-Line Program Equivalence Problem [MT85].

[BDBK*90] S. Ben-David, A. Borodin, R. M. Karp, G. Tardos, and A. Wigderson. On
the power of randomization in online algorithms. In Proc. 22nd Ann. ACM
Symp. on Theory of Computing, pages 379-386, Baltimore, MD, May 1990.
They prove the existence of an efficient “simulation” of randomized online
algorithms by deterministic ones, which is the best possible in the presence of

an adaptive adversary.

92

www.manaraa.com

[BDMP91] M. Blum, A. DeSantis, S. Micali, and G. Persiano. Noninteractive zero-
knowledge. SIAM Journal on Computing, 20(6):1084-1118, 1991. A key paper
that summarizes the previous work on non-interactive zero-knowledge proofs.
The concept of shared randomness is introduced, and how that can dispose of
interaction between the prover and the verifier is illustrated. The authors show
that non-interactive zero-knowledge proofs exist for some number-theoretic
languages for which no efficient algorithms are known. They also show that
if quadratic residuosity is computationally hard, satisfiability also has a non-

interactive zero-knowledge proof.

[BDS*92] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Appli-
cations of random sampling to on-line algorithms in computational geometry.
Discrete Computational Geometry, 8:51-71, 1992. This paper treats the same
kind of problems as in [CS89], but in a semi-dynamic way: the data can be
initially unknown and added one by one. The analysis assumes that the points

are inserted in a random order.

[Bec82] M. Becker. A probabilistic algorithm for vertex connectivity of graphs. In-
formation Processing Letters, 15(3):135-136, October 1982. A probabilistic
algorithm is presented which computes the vertex connectivity of an undi-
rected graph G = (V, E) in expected time O((—log €)|V|*/?|E|)) with error
probability at most e, provided that |E| < 1d|V|?, for some constant d < 1.

[Ben80] J. Bentley. Multidimensional divide-and-conquer. Communications of the
ACM, 23:214-229, 1980. This paper contains an nlog(n) deterministic algo-

rithm for finding nearest neighbors in two-dimensional space.

[Ber70] E. R. Berlekamp. Factoring polynomials over large finite fields. Math. Comput.,
24, 1970. This paper presents algorithms for root-finding and factorization,
two problems in finite fields. The latter problem is reduced to the root-finding
problem, for which a probabilistic algorithm is given. This paper is a precursor

of [Rab80b].

[Ber80] A. J. Bernstein. Output guards and nondeterminism in CSP. ACM Trans.
on Programming Languages and Systems, 2(2):234-238, April 1980. Bernstein
presents a distributed algorithm for CSP output guards based on priority

ordering of processes.

93

www.manaraa.com

[BFKV92] Y. Bartal, A. Fiat, H. Karloff, and R. Vohra. New algorithms for an ancient
scheduling problem. In Proc. 2/th Ann. ACM Symp. on Theory of Computing,
pages 51-58, Victoria, B.C., Canada, May 1992. They consider the on-line
version of the original m-machine scheduling problem: given m machines and
n positive real jobs, schedule the n jobs on m machines so as to minimize
the makespan, the completion time of the last job. In the on-line version, as
soon as job j arrives, it must be assigned immediately to one of the machines.
They present a competitive deterministic algorithm for all m and an optimal

randomized algorithm for the case m = 2.

[BFLIO0] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has
two-prover interactive protocols. In Proc. 31st Ann. IEEE Symp. on Foun-
dations of Computer Science, pages 16-25, 1990. Babai et al. prove, using
the two-prover interactive proof systems introduced in [BOGKW88], that the
class of languages that have a two-prover interactive proof system is non-

deterministic exponential time.

[BFM88] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge proof sys-
tems and applications. In Proc. 20th Ann. ACM Symp. on Theory of Comput-
ing, pages 103-112, 1988. This paper introduces the notion of non-interactive
zero-knowledge proofs where the interaction between the prover and the veri-

fier is replaced by shared, random strings.

[BG81] C. H. Bennett and J. Gill. Relative to a random oracle A, P4 # NP* = Co-
N P4 with probability 1. SIAM Journal on Computing, 10(1):96-113, February
1981. Several relationships are given that hold with probability 1 for language
classes relativized to a random oracle A, including the one mentioned in the
title.

[BG89a] D. Beaver and S. Goldwasser. Multiparty computation with faulty majority.
In Proc. 30th Ann. IEEE Symp. on Foundations of Computer Science, pages
468-473, 1989. A variation of zero-knowledge proofs is considered, where slow
revealing of knowledge to faulty processors is permitted. An algorithm for
distributed boolean function computations in Byzantine networks where more
than half the processors are faulty is presented. The constraint is that faulty
processors should not be able to compute the function before the non-faulty

ones do.

94

www.manaraa.com

[BG89D] M. Bellare and S. Goldwasser. A new paradigm for digital signatures and
message identification based on non-interactive zero-knowledge proofs. In
Advances in Cryptology—-CRYPTO 89, Lecture Notes in Computer Science,
Vol. 435, pages 194-211. Springer-Verlag, 1989. This paper shows how non-
interactive zero-knowledge can be used to yield a new paradigm for secure
digital signature schemes (also see [GMR88]).

[BGGI0] M. Bellare, O. Goldreich, and S. Goldwasser. Randomness in interactive
proofs. In Proc. 31st Ann. IEEE Symp. on Foundations of Computer Sci-
ence, pages 563-572, 1990. The power of randomness in interactive proof
systems, in quantitative terms, is considered. A randomness-efficient error re-
duction technique for converting one proof system into another one using the

same number of rounds is presented.

[BGLRY3] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically
checkable proofs and applications to approximation. In Proc. 25th Ann. ACM
Symp. on Theory of Computing, pages 294-304, San Diego, CA, May 1993.
Bellare et al. construct multi-prover proof systems for NP which use only a con-
stant number of provers to simultaneously achieve low error, low randomness
and low answer size. As a consequence, they obtain asymptotic improvements

to approximation hardness results for a wide range of optimization problems.

[BHZ87] R. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive
proofs? Information Processing Letters, 25:127-132, 1987. This is important
paper, along with [For87], provides a method of gaining high confidence that

certain languages are not NP-complete.

[BI86] L. Babai and A. Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms, 7(4):567-583,
Dec 1986. An Independent Set of a graph is a set of vertices, no two of
which are adjacent. A maximal independent set is an independent set that is
not a proper subset of any other independent set. A simple algorithm which
is always correct and runs in O(logn) time using O(|E| dyqx) processors on
a Concurrent Read Concurrent Write parallel machine is shown. Here, d,,4.
is the maximum degree of any vertex in the graph. The earlier best was a
deterministic algorithm for an Exclusive Read Exclusive Write architecture

that ran in O((log n)*) time using O((n/log n)?) processors.

95

www.manaraa.com

[BK89] M. Blum and S. Kannan. Designing programs that check their work. In Proc.
21st Ann. ACM Symp. on Theory of Computing, pages 86-97, May 1989. A
more detailed version of [BR88]. Also see “Designing programs that check their
work,” Technical Report, Computer Science Division, University of California,
Berkeley, CA 94720, Dec. 1988.

[BKRS92] A. Blum, H. Karloff, Y. Rabani, and M. Saks. A decomposition theoren and
bounds for randomized server problems. In Proc. 33rd Ann. IEEE Symp. on
Foundations of Computer Science, pages 197-207, 1992. In a k-server problem,
each server is at some point in a metric space. At each time step, a request
arises. Each request is a point in metric space, and must be serviced by moving
one of the k servers to the point specified. The cost associated with the request
is the distance that the server moves. The competitive ratio of a k-server sys-
tem is the worst-case ratio of the cost of an interactive algorithm on a sequence

of inputs, to the optimal cost that would be incurred if the entire sequence were

known in advance. The paper proves a lower bound of Q(\/log k/loglog k) for
the competitive ratio of a k-server system assuming an oblivious adversary.

This improves on the previously known bound of Q(log log k).

[BL92] P. Beame and J. Lawry. Randomized vs. nondeterministic communication
complexity. In Proc. 24th Ann. ACM Symp. on Theory of Computing, pages
188-199, Victoria, B.C., Canada, May 1992. The authors show that the two

complexities are not always the same.

[BLRIO] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications
to numerical problems. In Proc. 22nd Ann. ACM Symp. on Theory of Com-
puting, pages 73-83, 1990. This paper is a more recent reference on the use

of randomization in program testing and adds to the collection of interesting
examples contained in [BR88, BK89].

[Blu82] M. Blum. Coin flipping by telephone. In Proc. 1982 IEEE COMPCON, High
Technology in the Information Age, pages 133-137, 1982. This paper describes
how two parties can use encryption and decryption keys in a public key cryp-

tosystem to toss coins and exchange results in a distributed environment.

[BM8&4] M. Blum and S. Micali. How to generate cryptographically strong sequence of
pseudo-random bits. SIAM Journal on Computing, 13:850-864, 1984. This pa-

96

www.manaraa.com

per introduces the notion of cryptographically secure pseudo-random number

generator.

[BM88| L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and
a hierarchy of complexity classes. Journal of Computer and System Sciences,
36:254-276, 1988. The proof system is considered as a game played between
two players, the verifier and the prover, called Arthur and Merlin, respectively.
Arthur and Merlin can toss coins and can talk back and forth. In this type
of proof-system, all coin tosses made by the verifier are seen by the prover. A

hierarchy of complexity classes “just above NP”is derived.

[BM89] M. Bellare and S. Micali. Non-interactive oblivious transfer and applications.
In Advances in Cryptology—-CRYPTO 89, Lecture Notes in Computer Science,
Vol. 435, pages 547-559. Springer-Verlag, 1989. Based on a complexity assump-
tion, Bellare and Micali show that it is possible to build public-key cryptosys-

tems in which oblivious transfer is itself implemented without any interaction.

[BMO90] M. Bellare, S. Micali, and R. Ostrovsky. Perfect zero-knowledge in constant
rounds. In Proc. 22nd Ann. ACM Symp. on Theory of Computing, pages
482-493, 1990. This paper contains the first constant-round solutions with no
unproven assumptions for the problems of graph isomorphism and quadratic

residuosity.

[BMS86] E. Bach, G. Miller, and J. Shallit. Sums of divisors, perfect numbers and
factoring. SIAM Journal on Computing, 15(4):1143-1154, November 1986.
The authors show that computing the sum of divisors of a number N is as

hard as factoring N. They also give three natural sets which are in BPP
(see [Gil77]) but are not known to be in RP.

[BN93] R. B. Boppana and B. O. Narayanan. The biased coin problem. In Proc.
25th Ann. ACM Symp. on Theory of Computing, pages 252-257, San Diego,
CA, May 1993. A slightly random source (with bias €) is a sequence = =
(z1,®2,- -, 2,) of random bits such that the conditional probability that z; =
1, given the outcomes of the first ¢+ — 1 bits, is always between % — € and
% + €. Given a subset of S of {0,1}", its e-biased probability is defined to be
the minimum of Pr[z € S] over all slightly random sources = with bias €. The
authors show that for every fixed € < % and almost every subset S of {0,1}",

these-biasedsprobability of S is bounded away from 0. They also show that there

97

www.manaraa.com

exists a perfect-information, collective coin-flipping (leader election) protocol
for n players that tolerates en cheaters, for every e < (24/10 — 5)/3 ~ .44.

[BNS89] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols and logspace-hard
pseudorandom sequences. In Proc. 21st Ann. ACM Symp. on Theory of Com-
puting, pages 1-11, 1989. A lower bound is obtained for the bit complexity of
computing functions of n variables, where the i** variable resides on processor
t. The communication mechanism considered is a shared blackboard. Using
this bound, algorithms are developed that generate, in polynomial time, pseu-
dorandom sequences of length n from a seed of length exp(c+/log n). These
pseudorandom sequences cannot be distinguished from truly random sequences

by any logspace Turing machine.

[BO83] M. Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols. In Proc. Second Ann. ACM Symp. on Principles of Distributed
Computing, pages 27-30, 1983. Ben-Or’s probabilistic algorithm for asyn-
chronous Byzantine agreement, discussed in Section 3.5, was one of the first
published solution to the problem, and remains the simplest. Processes toss
coins independently to reach consensus on a value. His algorithm requires that
less than one-fifth of the processes are faulty for correctness to be guaranteed.
The expected number of rounds is exponential in the number of processes n,

but becomes a constant when the number of faulty processes is O(1/n).

[BO85] M. Ben-Or. Fast asynchronous Byzantine agreement (extended abstract). In
Proc. Fourth Ann. ACM Symp. on Principles of Distributed Computing, pages
149-151, 1985. This work extends Bracha’s [Bra85] algorithm to asynchronous
networks, initially obtaining a polynomial expected-time protocol. This proto-
col is refined with the recursive use of Bracha’s techniques to get an O(log" n)

algorithm, where k is a large constant.

[BOGKWS88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interac-
tive proofs: How to remove the intractability assumptions. In Proc. 20th Ann.
ACM Symp. on Theory of Computing, pages 113-131, 1988. A multi-prover

interactive proof model is proposed and its properties examined.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proc. 20th Ann.

98

www.manaraa.com

ACM Symp. on Theory of Computing, pages 1-10, 1988. The problem is the

same as that in [CCD88| and the results obtained are similar.

[BOL89] M. Ben-Or and N. Linial. Collective coin flipping. In S. Micali, editor, Ad-
vances in Computing Research 5: Randomness and Computation, Greenwich,
CT, 1989. JAI Press. Ben-Or and Linial consider the problem of obtaining a
distributed coin toss, where each node is initially assigned either a head or a
tail. The outcome of the distributed coin toss should not be affected by bias at
individual nodes. To exclude the obvious trivial solution where each non-faulty
node picks a predetermined value, it is required that if every node changes its
initial value, the result of the distributed coin toss should also change. An
efficient solution is obtained under the assumption that unfair (faulty) nodes

have complete knowledge of actions taken by all nodes.

[Bop89] R. B. Boppana. Amplification of probabilistic boolean formulas. In S. Micali,
editor, Advances in Computing Research 5: Randomness and Computation,
pages 27-45, Greenwich, CT, 1989. JAI Press. Valiant’s [Val84a| algorithm is
shown to be the best possible. Also, an O(k*3nlogn) algorithm for computing

the kth threshold function of n variables is given.

[BP92] M. Bellare and E. Petrank. Making zero-knowledge provers eflicient. In Proc.
24th Ann. ACM Symp. on Theory of Computing, pages 711-722, Victoria,
B.C., Canada, May 1992. They prove that if a language possesses a statistical
zero-knowledge proof then it also possesses a statistical zero-knowledge proof
in which the prover runs in probabilistic polynomial time with an NP oracle.

Previously, this was only known given the existence of one-way permutations.

[BR88| M. Blum and P. Raghavan. Program correctness: Can one test for it? Techni-
cal Report RC 14038 (#62902), IBM T.J. Watson Research Center, September
1988. They present “program checkers” for a number of interesting problems

based on interactive proofs.

[BR89a] L. Babai and L. Rényai. Computing irreducible representations of finite
groups. In Proc. 30th Ann. IEEE Symp. on Foundations of Computer Sci-
ence, pages 93-98, Research Triangle Park, NC, October 1989. IEEE Com-
puter Society Press. In this paper, the authors give a randomized (Las Vegas)
polynomial time algorithm for decomposing a given representation of a finite

groupyovergangalgebraic number field into absolutely irreducible constituents.

99

www.manaraa.com

[BR89b] B. Berger and J. Rompel. Simulating (log® n)-wise independence in NC. In
Proc. 30th Ann. IEEFE Symp. on Foundations of Computer Science, Research
Triangle Park, NC, Oct 1989. IEEE Computer Science Press. A general frame-
work for the derandomization of randomized NC algorithms whose analysis
uses only polylogarithmic independence is presented. This framework allows
the derivation of NC algorithms for many problems that were not previously
known to be in NC.

[Bra85] G. Bracha. An O(log n) expected rounds randomized Byzantine generals pro-
tocol. In Proc. 17th Ann. ACM Symp. on Theory of Computing, pages 316-326,
1985. Bracha shows how to partition a set of n synchronous processes (of which
at most a third are faulty) into overlapping groups of processes such that the
number of faulty groups is at most the square root the total number of groups.
Ben-Or’s algorithm for Byzantine agreement (see Section 3.5) is then used to

obtain an O(log n) protocol.

[Bro85] A. 7. Broder. A provably secure polynomial approximation scheme for the
distributed lottery problem (extended abstract). In Proc. Fourth Ann. ACM
Symp. on Principles of Distributed Computing, pages 136-148, 1985. Rabin’s
classic Byzantine agreement algorithm [Rab83] uses a coin-toss whose outcome
is available to all processes, but which cannot be predicted a priori, to reach
Byzantine agreement in constant time. Broder demonstrates a polynomial-
time distributed mechanism to implement such a coin toss in a Byzantine

environment.

[Bro86] A. Z. Broder. How hard is it to marry at random? (On the approximation
of the permanent). In Proc. 18th Ann. ACM Symp. on Theory of Comput-
ing, pages 50-58, 1986. This paper provides a full-polynomial randomized
approzimation scheme (fpras) for approximating the permanent. Evaluating
the permanent of a n X n matrix is equivalent to counting perfect matchings
in an associated bipartite graph. The problem of approximately counting the
perfect matchings in a graph is reduced to that of generating them uniformly.
See [JS89] for the definition of fpras and other related material. An erratum
can be found in Proc. 20th Ann. ACM Symp. on Theory of Computing, 1988.).

[Brog89] A. 7. Broder. Generating random spanning trees. In Proc. 30th Ann. IEEE
Symp. on Foundations of Computer Science, pages 442-453, Oct 1989. This
100

www.manaraa.com

paper solves the problem of generating a spanning tree of a connected, undi-
rected graph G which as the following special property: it is chosen uniformly
at random from all possible spanning trees of G. The expected running time
of the probabilistic algorithm is O(nlog n) per generated tree for almost all

graphs. It can be O(n®) per generated tree in the worst case.

[BRS91a] R. Beigel, N. Reingold, and D. Spielman. PP is closed under intersection.
In Proc. 23rd Ann. ACM Symp. on Theory of Computing, pages 1-9, New
Orleans, LA, May 1991. The randomized complexity class PP is shown to be

closed under intersection and union.

[BRS91b] A. Blum, P. Raghavan, and B. Schieber. Navigating in unfamiliar geometric
terrain. In Proc. 23rd Ann. ACM Symp. on Theory of Computing, pages 494—
504, New Orleans, LA, May 1991. They consider the problem of a robot that
has to travel from a start location to a target in an environment with opaque
obstacles that lie in its way. The robot always knows its current absolute
position and that of the target. It does not, however, know the positions and
extents of the obstacles in advance; it finds out about obstacles as it encounters
them. They present an optimal randomized algorithm for scenes containing

arbitrary polygonal obstacles.

[BS83] G. N. Buckley and A. Silberschatz. An effective implementation for the gen-
eralized input-output construct of CSP. ACM Trans. on Programming Lan-
guages and Systems, 5(2), 1983. They present a distributed algorithm for CSP
output guards based on priority ordering of processes. Their algorithm has
the property that two processes that can communicate and do not establish

communication with a third process will communicate within a bounded time.

[BT93] J.-D. Boissonnat and M. Teillaud. On the randomized construction of the
Delaunay tree. Theoretical Computer Science, 112:339-354, 1993. An on-line
randomized algorithm which computes Delaunay triangulation and Voronoi
diagrams of points in any number of dimensions is given. The complexity of
the algorithm is optimal provided that the points are inserted in a random

order.

[BV93] E. Bernstein, , and U. Vazirani. Quantum complexity theory. In Proc.
25th Ann. ACM Symp. on Theory of Computing, pages 11-20, San Diego,
CAzpMay1993. A quantum Turing Machine, as originally formulated by

101

www.manaraa.com

Deutsch [Deu85), may be thought of as a quantum physical analogue of a
probabilistic Turing Machine: it has an infinite tape, a finite state control,
and, in its most general form, produces a random sample from a probability
distribution on any given input. Bernstein and Vazirani prove the existence of
a universal quantum Turing Machine, whose simulation overhead is polynomi-
ally bounded. They also present the first evidence that quantum TMs might be
more powerful than classical probabilistic TMs. Specifically, they prove that
there is an oracle relative to which there is a language that can be accepted
in polynomial time by a quantum TM but cannot be accepted in n°1°8™) time

by a bounded-error probabilistic TM.

[Carl2] R. D. Carmichael. On composite numbers p which satisfy the Fermat con-
gruence a?~! = p. American Mathematical Monthly, 19:22-27, 1912. Let
n = IIIZ"pY be the unique prime factorization of n, and let A(n) =

lem{py" *(p1 — 1),...,0%* *(pm — 1)}. Carmichael shows that n satisfies Fer-

mat’s congruence if and only if A(n) divides (n — 1).

[CC85] B. Chor and B. Coan. A simple and efficient randomized Byzantine agree-
ment algorithm. IEFE Trans. on Software Engineering, SE-11(6):531-539,
June 1985. Chor and Coan present a randomized algorithm for synchronous
Byzantine agreement when n > 3t + 1, where n is the total number of proces-
sors and t is the number of faulty processors. Their algorithm reaches agree-
ment in O(t/log n) expected rounds and O(n?t/logn) expected message bits,

independently of the distribution of processor failures.

[CCD8g] D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure
protocols. In Proc. 20th Ann. ACM Symp. on Theory of Computing, pages 11—
19, 1988. Assuming the existence of authenticated secrecy channels between
each pair of participants (P;s), this paper shows that if at least 2n/3 P;s are
honest then a function f(z1,zs,...2,), where z; is known only to P; for each

t, can be computed without any P; revealing its information.

[CCTI1] K. L. Clarkson, R. Cole, and R. E. Tarjan. Randomized parallel algorithms for
trapezoidal diagrams. In Proc. Seventh Ann. ACM Symp. on Computational
Geometry, pages 152-161, North Conway, NH, June 1991. Describes ran-
domized parallel CREW PRAM algorithms for building trapezoidal diagrams

of line segments in the plane. For general segments, they give an algorithm

102

www.manaraa.com

requiring optimal O(A + nlogn) expected work and optimal O(logn) time,

where A is the number of intersecting pairs of segments.

[CD89] B. Chor and C. Dwork. Randomization in Byzantine agreement. In Advances
in Computing Research 5: Randomness and Computation, pages 443—-497. JAI
Press, 1989. A useful survey of the myriad of randomized distributed algo-

rithms for Byzantine agreement.

[CDRS90] D. Coppersmith, P. Doyle, P. Raghavan, and M. Snir. Random walks on
weighted graphs and applications to on-line algorithms (preliminary version).
In Proc. 22nd Ann. ACM Symp. on Theory of Computing, pages 369-378,
Baltimore, MD, May 1990. They show that the problem of designing and
analyzing randomized on-line algorithms is closely related to the synthesis of

random walks on graphs with positive real costs on their edges.

[CF386] J. D. Cohen and M. J. Fischer. A robust and verifiable cryptographically
secure election scheme. In Proc. 27th Ann. IEEE Symp. on Foundations of
Computer Science, pages 372-381, 1986. A cryptographic election scheme
and an IP proof for convincing participants of the correctness of the election

procedure.

[CF90] B. Chazelle and J. Friedman. A deterministic view of random sampling and
its use in geometry. Combinatorica, 10(3):229-249, 1990. Using techniques
due to Lovéasz and Spencer, the authors present a unified framework for de-
randomizing probabilistic algorithms that resort to repeated random sampling
over a fixed domain. In the process, they establish results of independent in-
terest concerning the covering of hypergraphs. Specifically, via a modification
of Lovasz’s greedy cover algorithm, they give an algorithm that, given a hyper-
graph with n vertices and m edges, each of size > an, computes an r-sample
that intersects every edge e of the hypergraph in Q(|e|r/n) vertices, where
r = O((logn + logm)/a). This improves upon Lovasz’s algorithm in terms
of the number of covered vertices. The tools they use for computing covers
“are powerful enough to derandomize just about every probabilistic algorithm

proposed in computational geometry”.

[CFLS93] A. Condon, J. Feigenbaum, C. Lund, and P. Shor. Probabilistically checkable
debate systems and approximation algorithms for PSPACE-hard functions. In
Proca2bthydnn. ACM Symp. on Theory of Computing, pages 305-314, San

103

www.manaraa.com

Diego, CA, May 1993. A probabilistically checkable debate system (PCDS) for a
language L consists of a probabilistic polynomial-time verifier V and a debate
between player 1, who claims that the input @ is in L, and player 0, who claims
that the input « is not in L. The authors show that there is a PCDS for L
in which V flips O(log n) random coins and reads O(1) bits of debate if and
only if L is in PSPACE. This characterization of PSPACE is used to show
that certain PSPACFE-hard functions are as hard to approximate as they are

to compute exactly.

[CG8S] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness
and probabilistic communication complexity. SIAM Journal on Computing,
17:230-261, 1988. Given sources of stings in which no string is “too probable”,

a method of extracting almost unbiased random bits is presented.

[CGI0] R. Canetti and O. Goldreich. Bounds on tradeoffs between randomness and
communication complexity. In Proc. 81st Ann. IEEE Symp. on Foundations
of Computer Science, pages 766-775, 1990. Instead of considering the qual-
itative question, Is an algorithm deterministic or randomized?, the authors
try to determine, quantitatively, how much randomization does an algorithm
use. Tight lower bounds on the length of the random input of parties comput-
ing a function f — depending on the number of bits communicated and the

deterministic complexity of f — are derived.

[CGMAS85] B. Chor, S. Goldwasser, S. Micali, and B. Auwerbuch. Verifiable secret sharing
and achieving simultaneity in the presence of faults. In Proc. 26th Ann. IEEE
Symp. on Foundations of Computer Science, pages 383-395, 1985. The prob-
lems of verifiable secret-sharing and simultaneous broadcast are introduced.
Many problems such as distributed coin flipping can be reduced to these prob-

lems.

[CH89] J. Cheriyan and T. Hagerup. A randomized maximum-flow algorithm. In Proc.
30th Ann. IEEE Symp. on Foundations of Computer Science, pages 118-123,
Research Triangle Park, NC, October 1989. IEEE Computer Society Press. An
efficient randomized algorithm for computing the maximum flow in a network
is presented. For a network with n vertices and m directed edges, the algorithm
runs in expected time O(nm+n?(logn)?). The running time is actually O(nm)

for all except relatively sparse networks. This improves upon the best known

104

www.manaraa.com

deterministic solution which requires O(mnlog(n®/m)) time. The algorithm,
of the Las Vegas variety, is always correct and requires O(nmlogn) time in

the worst case.

[Cha84] C.C. Chang. The study of an ordered minimal perfect hashing scheme. Com-
munications of the ACM, 27(4):384-387, Apr 1984. Chang uses hash functions
of the form h(z) = (C mod p(z)) where C is an integer constant and p(z) gen-
erates a different prime for each integer z. No general method for finding p(z)

is given.

[Che93] J. Cheriyan. Random weighted Laplacians, Lovasz minimum digraphs and
finding minimum separators. In Proc. Fourth Ann. ACM-SIAM Symp. on
Discrete Algorithms, pages 31-40, Austin, TX, January 1993. Cheriyan gives
an O(n?3%®)-time randomized algorithm for the problem of finding a minimum
X-Y separator in a digraph, and of finding a minimum vertex cover in a bi-

partite graph, thereby improving on the previous best bound of O(n*?/log n).

[CHM92] 7.J. Czech, G. Havas, and B.S. Majewski. An optimal algorithm for generating
minimal perfect hash functions. Information Processing Letters, 43(5):257—
264, Oct 1992. The authors describe a randomized algorithm for generat-
ing perfect hash functions that are space optimal and allow an arbitrary ar-
rangement of keys in the hash table. The algorithm is based on the result
of P. Erdés and A. Rényi [ER60], which states that the majority of random
sparse 2—graphs are acyclic. The authors present a method of mapping a set
of keys, using universal hash functions, into a random graph. Once the map-
ping is computed it is refined to a perfect hash function in linear deterministic
time. The method strongly improves on the space requirements of the other

probabilistic methods for generating minimal perfect hash functions.

[Cic80] R. Cichelli. Minimal perfect hash functions made simple. Communications of
the ACM, 23(1):17-19, Jan 1980. A heuristic for computing a simple, fast, and
machine-independent hash function is presented. Because of these properties,

several attempts have been made to extend this paper since its publication.

[CL89] A. Condon and R. Lipton. On the complexity of space bound interactive
proofs. In Proc. 30th Ann. IEEE Symp. on Foundations of Computer Science,
pages 462-467, 1989. Interactive proof systems that use two-way probabilistic

finite-statesverifiers can accept any recursively enumerable language if they are

105

www.manaraa.com

not required to halt with high probability on rejected inputs. An upper bound
on the power of IP systems that halt with high probability on all inputs is
also derived; such systems accept only a more restricted set of languages. It is

shown that any language accepted by such a system is in ATIME(22O(N)).

[CLRY0] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.
The MIT Press, 1990. This well-written encyclopedic introduction to algo-
rithms covers a number of randomized algorithms including those for boolean
matrix multiplication, binary search trees, primality testing, partitioning, uni-

versal hashing, and parallel prefix.

[CM91] E. Cohen and N. Megiddo. Improved algorithms for linear inequalities with two
variables per inequality. In Proc. 23rd Ann. ACM Symp. on Theory of Com-
puting, pages 145-155, New Orleans, LA, May 1991. A randomized polynomial
time algorithm is given for solving a system of linear inequalities wherein every

inequality the two nonzero coeflicients have opposite signs.

[CPV91] P. Caspi, J. Piotrowski, and R. Velzaco. An a priori approach to the evaluation
of signature analysis efficiency. IEEE Trans. on Computers, 40(9):1068-1071,
Sept 1991. This paper presents an interesting application of control random-
ization for compressing the results from a digital circuit under test. Instead
of imposing any distribution on the input sequence, the linear feedback shift

register used for compression is chosen at random.

[CRT79] E. Chang and R. Roberts. An improved algorithm for decentralized extrema-
finding in circular configurations of processors. Communications of the ACM,
22(5):281-283, May 1979. They present a deterministic distributed algorithm
for finding the largest of a set of n uniquely numbered processes in a ring. The
algorithm uses O(nlog n) messages on the average and O(n?) messages in the

worst case, and does not assume that n is known a priori.

[CR93| R. Canetti and T. Rabin. Fast asynchronous Byzantine agreement with op-
timal resilience. In Proc. 25th Ann. ACM Symp. on Theory of Computing,
pages 42-51, San Diego, CA, May 1993. The resilience of a protocol is the
maximum number of faults in the presence of which the protocol meets its
specification. It is known that no Byzantine agreement (BA) protocol for n
players (either synchronous or asynchronous) can be [% |-resilient, and the only

knowny (5 |y=—k)-resilient BA protocol runs in expected exponential time. The

106

www.manaraa.com

authors show that there exists a fast ([5| — 1)-resilient BA protocol by pre-
senting a randomized protocol such that, with overwhelming probability, all
the non-faulty players complete execution of the protocol in constant expected

time.

[CRS93] S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal unique element
isolation, with applications to perfect matching and related problems. In Proc.
25th Ann. ACM Symp. on Theory of Computing, pages 458-467, San Diego,
CA, May 1993. The authors give a randomness-efficient RNC? algorithm for
perfect matching that uses O(log Z +log n) random bits, where Z is any given

upper bound on the number of perfect matchings in the given graph.

[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in com-
putational geometry, II. Discrete Computational Geometry, 4:387-421, 1989.
Efficient probabilistic algorithms are presented for the problems of line seg-
ment intersection, convex hull, polygon triangulation, and halfspace partitions
of point sets. Each algorithm is of the Las Vegas variety and uses the technique
of random sampling. An earlier version of this paper appeared in Proc. Fourth

ACM Symp. on Computational Geometry, 1988.

[CWT9] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, 18:143-154, 1979. This paper contains

the first discussion on universal hashing. An earlier version appeared in Proc.
Ninth Ann. ACM Symp. on Theory of Computing, 1977, pp. 106-112.

[CW89] A. Cohen and A. Wigderson. Dispensers, deterministic amplification, and
weak random sources (extended abstract). In Proc. 30th Ann. IEEE Symp.
on Foundations of Computer Science, pages 14-25, Research Triangle Park,
NC, October 1989. IEEE Computer Society Press. The authors use highly
expanding bipartite multigraphs (dispensers) to show that the error probabil-
ity of any RP or BPP algorithm can be made exponentially small in the size
of the input at the cost of only a constant factor increase in the number of
random bits used by the algorithm. The simulation of these algorithms with

weak sources of random numbers is also considered.

[Deu85| D. Deutsch. Quantum theory, the Church-Turing principle and the univer-
sal quantum computer. Proc. Royal Society of London, A400:97-117, 1985.

Deutsehgintroduces the quantum physical computer, later referred to as the

107

www.manaraa.com

“quantum Turing Machine” in [BV93], which can be thought of as a quantum
physical analogue of a probabilistic Turing Machine: it has an infinite tape, a
finite state control, and, in its most general form, produces a random sample

from a probability distribution on any given input.

[Dev92] O. Devillers. Randomization yields simple O(nlog* n) algorithms for difficult
Q(n) problems. International Journal of Computational Geometry and Appli-
cations, 2(1):97-111, 1992. This papers provides two O(nlog* n) randomized
algorithms. One computes the skeleton of a simple polygon and the other
the Delaunay triangulation of a set of points knowing the euclidean minimum
spanning tree. The existence of deterministic O(nlogn) algorithms for both

problems is an open problem.

[DFK91] M. Dyer, A. Frieze, and R. Kannan. A random polynomial time algorithm
for approximating the volume of a convex body. Journal of the ACM, 38:1-
17, 1991. A constant time oracle is assumed for determining if a point in
space is inside or outside a convex body in n-dimensional Euclidean space.
The algorithm runs in time bounded by a polynomial in n, the dimension of
the body, and 1/¢, where € is the relative error bound. With probability 3/4,

it finds an approximation satisfying the error bound.

[DGMP92] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash func-
tions are reliable. In Proc. 19th Int’l. Collogq. on Automata, Languages and Pro-
gramming, Lecture Notes in Computer Science, Vol. 623, pages 235-246, Vi-
enna, Austria, July 1992. Springer-Verlag. This paper, along with [DMadH92],
shows how to construct a perfect hash function in ®(n) time, which is suitable

for real-time applications (Theorems 6.1 and 7.1).

[Dij71] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Informatica,
1(2):115-138, 1971. Reprinted in Operating Systems Techniques, C.A.R. Hoare
and R.H. Perrot, Eds., Academic Press, 1972, pp. 72-93. This paper introduces

the classical synchronization problem of Dining Philosophers.

[DKM*88] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohn-
ert, and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. In
Proc. 29th Ann. IEEE Symp. on Foundations of Computer Science, pages 524—
531, White Plains, NY, Oct 1988. A randomized algorithm for the dictionary

problemgbasedyon perfect hashing is presented.

108

www.manaraa.com

[DKS88] C. Dwork, P. C. Kanellakis, and L. J. Stockmeyer. Parallel algorithms for term
matching. SIAM Journal on Computing, 17(4):711-731, 1988. In the context
of a parallel algorithm for the term matching problem, this paper shows how
randomization can be used to reduce the initial processor complexity from
O(n®) to O(M(n)), where M(n) is the processor complexity of multiplying

two n X n matrices.

[DLMVS88] P.Dagum, M. Luby, M. Mihail, and U.V. Vazirani. Polytopes, permanents and
graphs with large factors. In Proc. 29th Ann. IEEE Symp. on Foundations
of Computer Science, pages 412-421, 1988. Randomized algorithms for ap-
proximating the number of perfect matchings in a graph based on a geometric

reasoning are presented.

[dIVKS93] F. de la Vega, S. Kannan, and M. Santha. Two probabilistic results on merg-
ing. SIAM Journal on Computing, 22(2):261-271, 1993. Two probabilistic
algorithms for merging two sorted lists are presented. When m < n, the first
algorithm has a worst-case time better than any deterministic algorithm for
1.618 < n/m < 3. The algorithm is extended to perform well for any value of

n/m.

[DMadH90] M. Dietzfelbinger and F. Meyer auf der Heide. How to distribute a dictionary in
a complete network. In Proc. 22nd Ann. ACM Symp. on Theory of Computing,
pages 117-127, Baltimore, MD, May 1990. A randomized algorithm is given for
implementing a distributed dictionary on a complete network of p processors.
The algorithm is based on hashing and uses O(n/p) expected time to execute
n arbitrary instructions (insert, delete, lookup). The response time for each

lookup is expected constant.

[DMadH92] M. Dietzfelbinger and F. Meyer auf der Heide. Dynamic hashing in real time. In
Informatik - Festschrift zum 60. Geburtstag von Ginter Holtz, Teubner-Texte
zur Informatik, Band 1, pages 95-119. B. G. Teubner, Stuttgart, Germany,
1992. The FKS probabilistic procedure is extended to real-time. See Theo-
rems 6.1 and 7.1 in [DGMP92]. A preliminary version of this paper appeared
as “A new universal class of hash functions and, dynamic hashing in real

time,” Proc. 17th Int’l. Collog. on Automata, Languages and Programming,
1990, pp. 6-19.

109

www.manaraa.com

[DMT92] O. Devillers, S. Meiser, and M. Teillaud. Fully dynamic Delaunay triangulation
in logarithmic expected time per operation. Computational Geometry: Theory
and Applications, 2(2):55-80, 1992. This paper extends the results of [BT93]
by considering the deletion of points. The Delaunay triangulation of n points
is updated in O(log n) expected time per insertion and O(loglogn) expected
time per deletion. The insertion sequence is assumed to be in a random order,
and deletions are assumed to concern any currently present point with the

same probability.

[DoD83] DoD (United States Dept. of Defense). Reference Manual for the Ada Pro-
gramming Language, MIL-STD 1815A, February 1983. Section 3.2 of our sur-
vey discusses a randomized distributed algorithm for the scheduling of input
and output guards. The designers of Ada chose only to allow nondeterminis-
tic choice among the accept alternatives of a select statement. This design
decision makes the guard scheduling problem in Ada much easier and, in par-

ticular, obliviates the need for randomization.

[Dol82] D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14—
30, 1982. This is the introductory paper on Byzantine Generals. Dolev proves
that Byzantine agreement is achievable in any distributed system if and only
if the number of faulty processors in the system is (1) less than one-third of
the total number of processors; and (2) less than one-half the connectivity of
the system’s network. In cases where agreement is achievable, deterministic

algorithms for obtaining it are given.

[DS90] C. Dwork and L. Stockmeyer. The time complexity gap for 2-way probabilistic
finite-state automata. SIAM Journal on Computing, 19(6):1011-1023, 1990.
Among other results, this paper shows that any 2-way probabilistic finite au-
tomaton recognizing a non-regular language must use exponential expected
time infinitely often. Since any regular language can be recognized in linear
time, a time-complexity gap is established. Similar results were published in
the paper entitled “On the Power of 2-Way Probabilistic Finite Automata,”
which appeared in Proc. 30th Ann. IEEE Symp. on Foundations of Computer
Science, 1989.

[DSMP87] A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge
proof-systems. In Advances in Cryptology—-CRYPTO 87, Lecture Notes in
110

www.manaraa.com

Computer Science, Vol. 293, pages 52-72. Springer-Verlag, 1987. This pa-
per introduces the notion of non-interactive zero-knowledge proofs based on a

weaker complexity assumption than that used in [BFMS88].

[DSMP88] A. De Santis, S. Micali, and G. Persiano. Non-interactive zero-knowledge
proof-systems with preprocessing. In Advances in Cryptology-CRYPTO 88,
Lecture Notes in Computer Science, Vol. 403, pages 269-283. Springer-Verlag,
1988. The authors show that if any one-way function exists after an interactive
preprocessing stage then any sufficiently short theorem can be proven non-

interactively in zero-knowledge.

[DSS90] C. Dwork, D. Shmoys, and L. Stockmeyer. Flipping persuasively in constant
time. SIAM Journal on Computing, 19(2):472-499, 1990. An efficient random-
ized protocol is presented that tolerates up to n/(log n) malicious processors
that requires constant expected number of rounds to achieve a distributed coin
toss. Also given is a Byzantine Generals algorithm that tolerates n/(log n) fail-
ures and runs in constant expected number of rounds. A preliminary version
of this paper appeared in Proc. 27th Ann. IEEFE Symp. on Foundations of
Computer Science, 1986.

[DSY90] A. De Santis and M. Yung. Cryptographic applications of non-interactive
metaproofs and many-prover systems. In Advances in Cryptology—-CRYPTO
90, Lecture Notes in Computer Science, Vol. 537. Springer-Verlag, 1990. The
authors show how many provers can share the same random string in proving

multiple theorems non-interactively in zero-knowledge.

[ER60] P. Erdos and A. Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci., 5:17-61, 1960. A seminal paper on random graphs. Reprinted
in Paul Erdos: The Art of Counting. Selected Writings, J.H. Spencer, Ed.,
Vol. 5 of the series Mathematicians of Our Time, MIT Press, 1973, pp. 574—
617.

[EST74] P. Erdos and J. Spencer. Probabilistic Methods in Combinatorics. Academic
Press, New York and London, 1974. Recognized experts in the field present a
small, power packed monograph on non-constructive probabilistic methods in
combinatorics. Our algorithm for networks without large hierarchies is based
on the discussion in Chapter 1 of this book. Other highlights include, Ramsey’s

theoremsyandyevolution of random graphs.

111

www.manaraa.com

[FCDH91] E. Fox, Q.F. Chen, A. Daoud, and L.S. Heath. Order preserving minimal
perfect hash functions and information retrieval. ACM Trans. on Information
Systems, 9(2):281-308, July 1991. This algorithm combines the techniques of
embedding the keys into an r—graph and two-level hashing to design hash
functions that are optimal in terms of hashing time and space utilization. The
algorithm to generate the hash functions uses near-optimal space and time.

Any desired order can be maintained.

[Fey82] R. P. Feynman. Simulating physics with computers. International Journal
of Theoretical Physics, 21(6/7):467-488, 1982. Feynman points out the curi-
ous problem that it appears to be impossible to simulate a general quantum
physical system on a probabilistic Turing Machine without an exponential
slowdown, even if the quantum physical system to be simulated is discrete

(like some kind of quantum cellular automaton).

[FFS87] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. In Proc.
19th Ann. ACM Symp. on Theory of Computing, pages 210-217, 1987. Zero-
knowledge proofs, in the traditional sense, reveal 1 bit of information to the
verifier, viz. w € L or w ¢ L. This paper proposes the notion of “truly zero
knowledge” proofs where the prover convinces the verifier that he/she knows
whether w is or is not in L, without revealing any other information. An RSA-
like scheme based on the difficulty of factoring, which is much more efficient
than RSA, is also presented.

[FGM*89] M. Fiirer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On com-
pleteness and soundness in interactive proof systems. In S. Micali, editor,
Advances in Computing Research 5: Randomness and Computation, pages
429-442. JAI Press, Greenwich, CT, 1989. An interactive proof system for a
language L is said to have perfect completeness if the verifier always accepts
w if w € L. This paper proves that any language having an interactive, pos-
sibly unbounded, proof has one with perfect completeness. Only languages in
NP have interactive proofs with perfect soundness. This paper first appeared
under the title “Interactive proof system: provers that never fail and random
selection,” authored by O. Goldreich, Y. Mansour and M. Sipser, in Proc. 28th
Ann. IEFE Symp. on Foundations of Computer Science, 1987, pp. 449-461.

112

www.manaraa.com

[FH84] V. A. Feldman and D. Harel. A probabilistic dynamic logic. Journal of Com-
puter and System Sciences, 28(2):193-215, 1984. This paper defines a formal
logic PrDL to reason about probabilistic programs. It extends the semantics

of Kozen [Koz81] formulas involving probabilistic programs.

[FHCD92] E. Fox, L.S. Heath, Q.F. Chen, and A. Daoud. Practical minimal perfect hash
functions for large databases. Communications of the ACM, 35(1):105-121,
January 1992. This paper presents two randomized algorithm for minimal
perfect hashing functions that are designed for use with data bases with as
many as a million keys. The algorithms have been experimentally evaluated.
The first algorithm generates hash functions that are less than O(n) computer

words long, and the second generates functions that approach the theoretical
lower bound of Q(n/log n) words. This work is a predecessor of [FCDH91].

[FKS82] M. L. Fredman, J. Komlés, and E. Szemeredi. Sorting a sparse table with O(1)
worst case access time. In Proc. 23rd Ann. IEEE Symp. on Foundations of
Computer Science, pages 165-169, 1982. This paper proves many fundamental
results that are essential for constructing a perfect hashing function for a given

set of keys.

[FL82] M. J. Fischer and N. Lynch. A lower bound for the time to assure interactive
consistency. Information Processing Letters, 14(4):182-186, 1982. They prove
that no deterministic solution to the Byzantine Generals problem can reach

agreement in less than ¢ + 1 rounds, where ¢ is the number of faulty processes.

[Fla85] P. Flajolet. Approximate counting: A detailed analysis. BIT, 25:113-134,
1985. In 1978, R. Morris published an article in Communications of the ACM
entitled “Counting large numbers of events in small registers.” This paper pre-
sented a randomized algorithm, known as Approzimate Counting, that allows
one to approximately maintain a counter whose values may range in the inter-
val 1 to M using only about log log M bits, rather than the log M bits required
by a standard binary counter. The algorithm has proven useful in the areas
of statistics and data compression. Flajolet provides a complete analysis of
approximate counting which shows (among other things) that, using suitable
corrections, one can count up to M keeping only loglog M + é bits with an

accuracy of order O(27%/2).

113

www.manaraa.com

[F1a90] P. Flajolet. On adaptive sampling. Computing, 34:391-400, 1990. Adaptive
Sampling is a probabilistic technique due to Wegman that allows one to es-
timate the cardinality (number of distinct elements) of a large file typically
stored on disk. This problem naturally arises in query optimization of database
systems. Flajolet shows that using m words of in-core memory, adaptive sam-
pling achieves an expected relative accuracy close to 1.20/,/m. This compares
well with the probabilistic counting technique of Flajolet and Martin [FM85b]:
adaptive sampling appears to be about 50% less accurate than probabilistic
counting for comparable values of m. Adaptive sampling, however, is com-
pletely free of non-linearities for smaller values of cardinalities (probabilistic

counting is only asymptotically unbiased).

[FLP85] M. J. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consen-
sus with one faulty process. Journal of the ACM, 32(2), April 1985. This paper
proves that every completely asynchronous, deterministic algorithm for Byzan-
tine agreement has the possibility of nontermination, even with only one faulty
processor. This impossibility result does not hold in the synchronous case. For
completely asynchronous probabilistic algorithms, the problem is avoided since
termination is only required with probability 1. See Section 3.5 for an example

of such a probabilistic algorithm for asynchronous Byzantine agreement.

[FLS90] U. Feige, D. Lapidot, and A. Shamir. Multiple non-interactive, zero-knowledge
proofs based on a single random string. In Proc. 31st Ann. [EEE Symp. on
Foundations of Computer Science, pages 308-317, 1990. The following two
problems posed in [DSMP88], associated with non-interactive zero-knowledge
proof systems, are solved: (1) how to construct NIZK proofs under general
complexity assumptions rather than number-theoretic assumptions, and (2)
how to enable multiple provers to prove, in writing, polynomially many theo-
rems based on a single random string. The authors show that any number of
provers can share the same random string and that any trap-door permutation
can be used instead of quadratic residuosity. Also, if the prover is allowed to
have exponential computing power, then one-way permutations are sufficient

for bounded non-interactive zero-knowledge proofs.

[FLW92] A. M. Ferrenberg, D. F. Landau, and Y. J. Wong. Monte Carlo simulations:
Hidden errors from “good” random number generators. Physical Review Let-
ters569(23):3382-3388, December 1992. The authors unveil subtle correlations

114

www.manaraa.com

in five widely used pseudo-random number generators. They undertook this
investigation when a simple mathematical model of the behavior of atoms in
a magnetic crystal failed to give the expected results. They traced the error

to the pseudo-random number generator used in the simulation.

[FM85a] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 25(31):182-209, 1985.
This paper presents a probabilistic counting technique for determining the
number of distinct records in a file. The technique requires O(1) storage and a
single pass over the file. Also appeared as “Probabilistic counting,” Proc. 24th
Ann. IEFE Symp. on Foundations of Computer Science, 1983, pp. 76-84.

[FM85b] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base
applications. Journal of Computer and System Sciences, 31:182-209, 1985.
Probabilistic Counting is a technique for estimating the cardinality (number
of distinct elements) of a large file typically stored on disk. This problem
naturally arises in query optimization of database systems. Using m words of
in-core memory, probabilistic counting achieves an expected relative accuracy
close to 0.78//m. Moreover, it performs only a constant number of operations

per element of the file.

[FM88] P. Feldman and S. Micali. Optimal algorithms for Byzantine agreement. In
Proc. 20th Ann. ACM Symp. on Theory of Computing, pages 162-172, 1988.
The expected running time of this algorithm is constant in a synchronous net-
work of n nodes if the number of faults is less than n/3, and in an asynchronous

network of n nodes if the number of faults is less than n/4.

[For87] L. Fortnow. The complexity of perfect zero-knowledge. In Proc. 19th Ann.
ACM Symp. on Theory of Computing, pages 204-209, May 1987. The notion
of perfect zero-knowledge requires that the verifier, no matter how powerful it
is, not learn any additional information. Fortnow proves that for any language
which has a perfect zero-knowledge protocol, its complement has a single round
interactive protocol. This result implies that for NP-complete languages, there
are no perfect zero-knowledge protocols (unless the polynomial time hierarchy

collapses).

[FR8O0] N. Francez and M. Rodeh. A distributed abstract data type implemented
bypagprobabilistic communication scheme. In Proc. 21st Ann. IEEE Symp.

115

www.manaraa.com

on Foundations of Computer Science, pages 373-379, 1980. They also give a
deadlock-free, truly distributed and symmetric solution to the dining philoso-
phers problem based on a probabilistic implementation of CSP. In particular,
they present a randomized algorithm for the scheduling of input /output guards
in CSP, which we discuss in Section 3.2. This was one of the first papers on
probabilistic distributed algorithms. A revised version appears as TR 80, IBM
Scientific Center, Haifa, Israel, April 1980 (same title).

[FS89] L. Fortnow and M. Sipser. Probabilistic computation in linear time. In Proc.
21st Ann. ACM Symp. on Theory of Computing, pages 148-156, 1989. An or-
acle is specified, under which all problems solvable in random polynomial time
are solvable in random linear time, thus collapsing a number of randomized
complexity classes into one. Analogous results in deterministic computations

are demonstratably false.

[FS92] U. Feige and A. Shamir. Multiple oracle interactive proofs with constant
space verifiers. Journal of Computer and System Sciences, 44:259-271, 1992.
The authors show that the expected payoff of reasonable games of incomplete
information are undecidable. The Turing-machine simulation uses polynomial

cost and stops with probability 1.

[Fur87] M. Furer. The power of randomness for computational complexity. In Proc.
19th Ann. ACM Symp. on Theory of Computing, pages 178-181, 1987. This
paper improves on the VLSI algorithm by Mehlhorn and Schmidt [MS82]. An
O(n) average bit complexity algorithm with no probability of error is demon-
strated.

[Gaz91] H. Gazit. An optimal randomized parallel algorithm for finding the connected
components of a graph. SIAM Journal on Computing, 20(6):1046-1067, 1991.
The expected running time of this algorithm is O(log n) with O((m+n)/log n)
processors, where n is the number of vertices and m is the number of edges. It
uses O(m + n) space. The algorithm is optimal in the time-processor product

sense, as well as in space complexity.

[GBY91] G.H. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data Struc-
tures. Addison-Wesley, Reading, Mass., 1991. Section 3.3.16 gives an overview
of perfect hashing.

116

www.manaraa.com

[GGK92] M. Geréb-Graus and D. Krizanc. The average complexity of parallel com-
parison merging. SIAM Journal on Computing, 21:43-47, 1992. The authors
establish a lower bound on the time complexity of randomized merging of two
sorted lists in a parallel computation tree model. An earlier version of this
paper, entitled “The Complexity of Parallel Comparison Merging,” appeared
in Proc. 28th Symp. on Foundations of Computer Science, 1987.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random func-
tions. Journal of the ACM, 33:792-807, 1986. A computational complexity
measure of the randomness of functions is introduced, and, assuming the exis-

tence of one-way functions, a pseudo-random function generator is presented.

[GHY89] Z. Galil, S. Haber, and M. Yung. Minimum-knowledge interactive proofs for
decision problems. SIAM Journal on Computing, 18(4):711-739, Aug 1989.
This paper extends the work of [GMR89], the concept of minimum knowledge
is defined and a minimum-knowledge protocol for transferring the results of

any fixed computation from one party to another (e.g. prover to verifier) is

described.

[GilT7] J. T. Gill. Computational complexity of probabilistic Turing machines. SIAM
Journal on Computing, 6(4):675-695, December 1977. This paper defines the
basic notion of a probabilistic Turing machine (PTM). A PTM computes a
partial function that assigns to each input the output which occurs with a
probability greater than half. It is shown that a NDTM can be simulated by a
PTM in the same space but with a small error probability. Gill also considers
the complexity classes RP, PP, and BPP for polynomial-time probabilistic
Turing machines (see Section 4.1). He shows that P C RP C BPP C PP C
PSPACE and that RP C NP C PP.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-completeness. W.H. Freeman and Company, 1979. This
well-known book on the theory of NP-completeness contains a section on the
probabilistic analysis of approximation algorithms for NP-complete combina-

torial optimization problems.

[GK86] S. Goldwasser and J. Kilian. Almost all primes can be quickly certified. In
Proc. 18th Ann. ACM Symp. on Theory of Computing, pages 316-329, 1986.

Thegauthorsgshow that if Cramér’s conjecture about the spacing of prime

117

www.manaraa.com

numbers is true than there exists a random polynomial time algorithm for

primality testing.

[GKS92] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construc-
tion of Delaunay and Voronoi diagrams. Algorithmica, 7(4):381-413, 1992.
They give a new randomized incremental algorithm for the construction of
planar Voronoi diagrams and Delaunay triangulations. Their algorithm takes
expected time O(n/logn) and space O(n), is very practical to implement,

and along with the algorithm of [BT93], is more “on-line” than earlier similar
methods.

[GKS93] W. Goddard, V. King, and L. Schulman. Optimal randomized algorithms for
local sorting and set-maxima. SIAM Journal on Computing, 22(2):272-283,
April 1993. Nearly optimal randomized algorithms are presented for the local
sorting problem (i.e., determining the relative order in every pair of adjacent
vertices in a graph in which each vertex is assigned an element of a total order)
and the set-maxima problem (i.e., determining the maximum element of each

set in a collection of sets whose elements are drawn from a total order).

[GL89] R. I. Greenberg and C. E. Leiserson. Randomized routing on fat-trees. In
S. Micali, editor, Advances in Computing Research 5: Randomness and Com-
putation, pages 345-374. JAI Press, Greenwich, CT, 1989. Fat-Trees are a
class of routing networks in parallel computation. Given a set of messages to
send, the choice is made at random of which message is to be sent at what
time. This approach is different from that of [Val82]. See also Proc. 17th Ann.
ACM Symp. on Theory of Computing, 1985, pp. 241-249.

[GM84] S. Goldwasser and S. Macali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270-299, 1984. This paper introduces a new proba-
bilistic encryption technique. It also contains an excellent introduction to other
public key cryptosystems with discussion on objections to cryptosystems based

on trapdoor functions.

[GMRS3| S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure
against adaptive chosen-message attack. STAM Journal on Computing, 17:281—
308, 1988. This is a companion paper of [KPU88|.

118

www.manaraa.com

[GMRA39] S. Goldwasser, S. Macali, and C. Rackoff. The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing, pages 186-208, 1989. This
paper first appeared in Proc. 17th Ann. ACM Symp. on Theory of Comput-
ing, 1985, pp- 291-304. It introduces the important notion of zero-knowledge
interactive proofs. The authors show that it is possible to prove that certain

theorems are true without divulging why this is so.

[GMV9I1] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant-
time parallel algorithms. In Proc. 32nd Ann. IEEE Symp. on Foundations of
Computer Science, pages 698-710, 1991. This paper presents a paradigm for
obtaining O(log* n) running time for problems such as directory maintenance,

load balancing and hashing using n/log" n processors.

[GMW387] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In Proc. 19th
Ann. ACM Symp. on Theory of Computing, pages 218-229, 1987. Goldreich et
al. demonstrate the use of zero-knowledge proofs on proving the completeness

theorem for protocols with honest majority.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of
the ACM, 38(1):691-729, 1991. They show that for a language L in NP and
a string w in L, there exists a probabilistic interactive proof that efficiently
demonstrates membership of = in L without conveying additional information.
Previously, zero-knowledge proofs were known only for some problems that
were in both NP and co-NP. A preliminary version of this paper appeared
in Proc. 27th Ann. IEEFE Symp. on Foundations of Computer Science, 1986,
under the title “Proofs that yield nothing but their validity and a methodology
of cryptographic protocol design.”.

[Gol92] M. Goldwurm. Probabilistic estimation of the number of prefixes of a trace.
Theoretical Computer Science, 92:249-268, 1992. The author uses the result

to determine the behavior of several algorithms relating to trace languages.

[Gon84] G.H. Gonnet. Determining the equivalence of expressions in random polyno-
mial time. In Proc. 16th Ann. ACM Symp. on Theory of Computing, pages
334-341, 1984. Hashing functions are used to determine algebraic expression

equivaleneegwith a small probability of error. The probability of error can be

119

www.manaraa.com

made arbitrarily small, depending on the number of iterations of the algorithm.

See [Gon86] for some related work.

[Gon86] G.H. Gonnet. New results for random determination of equivalence of expres-
sions. In B.W. Char, editor, ISSAC ’86: Proc. Int’l. Symp. on Symbolic and
Algebraic Computation, pages 127-131. ACM Press, 1986. Some open prob-

lems in the same general area as that covered by [Gon84] are solved in this

paper.

[GRSS93] M. Golin, R. Raman, C. Schwarz, and M. Smid. Randomized data struc-
tures for the dynamic closest-pair problem. In Proc. Fourth Ann. ACM-SIAM
Symp. on Discrete Algorithms, pages 301-310, Austin, TX, January 1993. The
authors describe a new randomized data structure, the sparse partition, for
solving the dynamic closest-pair problem. Using this data structure, the clos-
est pair of a set of n points in k-dimensional space, for any fixed k, can be
found in constant time. If the points are chosen from a finite universe, and if
the floor function is available at unit-cost, then the data structure supports in-
sertions into and deletions from the set in expected O(log n) time and requires
expected O(n) space. Here, it is assumed that the updates are chosen by an

adversary who does not know the random choices made by the data structure.

[GS89] S. Goldwasser and M. Sipser. Private coins versus public coins in interac-
tive proof systems. Advances in Computing Research 5: Randomness and
Computation, 1989. This work establishes equivalence between the notions
of interactive proofs introduced in [GMR89] and [BM88]. (A preliminary ver-
sion appeared in Proc. 18th Ann. ACM Symp. on Theory of Computing, 1986,
pp. 59-68).

[Gup93] R. Gupta. ®-test: Perfect hashed index test for response validation. In Proc.
1993 IEFE Int’l. Conf. on Computer Design, Cambridge, MA, Oct 1993. A
scheme for checking the fidelity of test responses generated by a specially
tailored sequence of test inputs is described. Randomized search is used to
compute a special perfect hashing function h(z) that map the expected test
outcomes to the sequence [1...m]. This sequence is checked by a hardware

implementation of h(z) and an up-counter.

[GW86] A. G. Greenberg and A. Weiss. A lower bound for probabilistic algorithms

for finitesstatemachines. Journal of Computer and System Sciences, 33(1):88,

120

www.manaraa.com

August 1986. A proof that the running time cannot be better than Q(22n) is

presented.

[GY89] R. Graham and A. Yao. On the improbability of reaching Byzantine consensus.
In Proc. 21st Ann. ACM Symp. on Theory of Computing, pages 467478, 1989.
The maximum probability (3, ; of obtaining consensus is attacked for ¢ > n/3
(For smaller values, deterministic algorithms are available, so 8,; = 1.) The
smallest non-trivial case, (31, is shown to be (\/ES) — 1)/2, the reciprocal of
the golden ratio. In a restricted model, it is shown that for all €, 0 < e < 1, if

1-logl—el/2
t/n >1-— lc)g(l—g(w, then /Bn,t < €.

[Had86] V. Hadzilacos. Ben-Or’s randomized protocol for consensus in asynchronous
systems. Course notes: Computer Science 2221F, Department of Computer
Science, University of Toronto, October 1986. An elegant proof of the cor-
rectness of Ben-Or’s [BO83| probabilistic algorithm for Byzantine agreement

is presented.

[Hag91] T. Hagerup. Constant-time parallel integer sorting. In Proc. 23rd Ann. ACM
Symp. on Theory of Computing, pages 299-306, New Orleans, LA, May 1991.
Standard sorting algorithms return the elements of an array in nondecreasing
order. In the chain sorting problem, the elements of a linked list are returned
in nondecreasing order. This problem can be viewed as more primitive than
the standard sorting problem as it does not involve list ranking computation,
which is implicit in the standard problem. Hagerup presents several efficient
randomized parallel algorithms for the chain sorting problem, some of which

require only constant expected time.

[Har87] D. Harel. Algorithmics: The Spirit of Computing. Addison-Wesley, 1987. This
book contains a well-written chapter on probabilistic algorithms and their

complexity theory.

[Has90] J. Hastad. Pseudo-random generators under uniform assumptions. In Proc.
22nd Ann. ACM Symp. on Theory of Computing, pages 395-404, Baltimore,
MD, May 1990. Hastad proves that given a function f that is one-way in
the uniform model (i.e., cannot be inverted except on a vanishing fraction of
the inputs by a probabilistic polynomial time Turing machine), it is possi-
ble to construct a pseudo random bit-generator that passes all probabilistic

polynemialstime statistical tests.

121

www.manaraa.com

[Her92] T. Herman. Self-stabilization: randomness to reduce space. Distributed Com-
puting, 6(2):95-98, 1992. Herman uses randomization to convert Dijkstra’s
k-state mutual exclusion protocol for unidirectional rings to a 3-state proto-

col.

[HMS87] A. Hajnal and W. Maass. Threshold circuits of bounded depth. In Proc.
28th Ann. IEEE Symp. on Foundations of Computer Science, pages 99-109,
1987. Polynomial size threshold circuits of bounded depth are viewed as mech-
anisms for parallel computations, where elements of the circuit are threshold
gates (output high if the weighted sum of inputs exceeds a set threshold).
Probabilistic, deterministic, imprecise and unreliable threshold circuits are

considered.

[HoaT4] C. A. R. Hoare. Monitors: An operating system structuring concept. Com-
munications of the ACM, 17(2):549-557, October 1974. Erratum in Commu-
nications of the ACM, Vol. 18, No. 2, 1975. This paper contains one of the
first solutions to the Dining Philosophers problem. A probabilistic algorithm
for this problem is the subject of Section 3.1.

[HoaT8| C. A. R. Hoare. Communicating Sequential Processes. Communications of
the ACM, 21:666—677, August 1978. Hoare’s novel language CSP combined
nondeterminism and synchronized message passing. Since its inception, various
schemes have been proposed to add output guards to the language. In Section

3.2, we discuss a probabilistic algorithm for output guards.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall Interna-
tional, U.K., 1985. Hoare’s book contains an elegant message-passing solution
to the Dining Philosophers problem. A probabilistic algorithm for this problem
is the subject of Section 3.1.

[Hop81] J. E. Hopcroft. Recent directions in algorithmic research. In P. Deussen, editor,
Proc. Fifth Conf. on Theoretical Computer Science, pages 123-134. Springer-
Verlag, 1981. This work is an early survey of probabilistic algorithms.

[HS85] S. Hart and M. Sharir. Concurrent probabilistic programs, or: How to sched-
ule if you must. SIAM Journal on Computing, 14(4):991-1012, November

1985. The authors analyze the worst-case probability of termination of a set

122

www.manaraa.com

of concurrently running processes. Each process may use randomization, and

fair interleaving is assumed.

[HT82] J. H. Halton and R. Terada. A fast algorithm for the Euclidean Traveling
Salesman problem, optimal with probability one. SIAM Journal on Com-
puting, 11(1), Feb. 1982. Halton and Terada present an algorithm for the
Travelling Salesman Problem over n points, which, for appropriate choice of
a function o takes less than no(n) time and asymptotically converges to the

minimum length tour, with probability one, as n — oo.

[ILL89] R. Impagliazzo, L. Levin, and M. Luby. Pseudorandom generation from one-
way functions. In Proc. 21st Ann. ACM Symp. on Theory of Computing, pages
12-24, 1989. The existence of one-way functions is shown to be necessary and
sufficient for the existence of pseudorandom generators. A one-way function
F(z) is one that is easily computed, but given F(z), it should not be possible
to easily recover z, either with a small circuit or with a fast algorithm. Algo-
rithms for pseudorandom generators are provided that use one-way functions

whose inverses are difficult to obtain using small circuits or fast algorithms.
See also [Has90].

[IM83] O. H. Ibarra and S. Moran. Probabilistic algorithms for deciding the equiva-
lence of straight-line programs. Journal of the ACM, 30(1):217-228, January
1983. They study the complexity of deciding the equivalence of straight-line
programs, i.e., those in which there are no loops, and only statements of the
foormx:=y,x: =y +2,Xx:=y-2z,and x :=y * z are permitted. Given two
such programs P and Q, Ibarra and Moran ask the question: Is P = Q? If
the domain of the variables is an infinite field such as the integers, then they
show that there exists a polynomial-time probabilistic algorithm to solve this
problem. If the domain is a finite field, the problem is shown to be NP-hard.

[IR81] A. Ttai and M. Rodeh. The lord of the ring or probabilistic methods for break-
ing symmetry in distributed networks. Technical Report RJ 3110, IBM, San
Jose, 1981. Itai and Rodeh consider the problems of choosing a leader and
determining the size of a ring of indistinguishable processors. If the size of the
ring is known, eflicient probabilistic algorithms exit for choosing a leader. How-

ever, there exists no probabilistic solution to the problem of determining the

123

www.manaraa.com

size of a ring that can guarantee both termination and a non-zero probability

of correctness.

[IRMS81] O. H. Ibarra, L. Rosier, and S. Moran. Probabilistic algorithms and straight-
line programs for some rank decision problems. In Information Processing
Letters, volume 12, pages 227-232, 1981. Given a positive integer r and a
matrix A with polynomial entries (where the polynomials are represented by
arbitrarily parenthesized arithmetic expressions using -+, -, *, and exponen-
tiation to a positive constant), the problem of deciding whether A has rank
r is reduced in polynomial time to the zero-equivalence problem (i.e., the

problem of determining whether a program always outputs 0) of straight-line
programs [MT85].

[1Z389] E. Impagliazzo and D. Zuckerman. How to recycle random bits. In Proc. 30th
Ann. IEEFE Symp. on Foundations of Computer Science, pages 248-253, 1989.
This paper proves that two very simple pseudo-random number generators,
which are minor modifications of linear congruential generator and the simple
shift register generator, are good for amplifying the correctness of probabilistic

algorithms.

[Jae81] G. Jaeschke. Reciprocal hashing: A method for generating minimal perfect
hashing functions. Communications of the ACM, 24(12):829-823, Dec 1981.
Hash functions, for a key « in a set S of positive integers, of the form h(z) =
(C/(Dz+FE)) mod N are considered. Though the existence of h is guaranteed,
the scheme suffers from many practical problems because of exhaustive nature
of the search for h.

[JKS84] J. Ja’Ja’, V. K. Prasanna Kumar, and J. Simon. Information transfer un-
der different sets of protocols. SIAM Journal on Computing, 13(4):840-849,
November 1984. This paper is a study of the communication complexity of
information transfer in deterministic, random, non-deterministic and proba-
bilistic computation models. It is widely conjectured that P C R C NP C PP
for polynomial time complexity classes. The authors prove that exponential

gaps exist among the corresponding communication complexity classes.

[Joh90] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume A: Algorithms and Com-
plexityschapter 9, pages 67-161. Elsevier and The MIT Press (co-publishers),

124

www.manaraa.com

1990. Johnson presents an extensive survey of computational complexity
classes. Of particular interest here is his discussion of randomized, probabilis-

tic, and stochastic complexity classes.

[JS89] M. R. Jerrum and A. Sinclair. Approximating the permanent. SIAM Journal
on Computing, 18(6):1149-1178, 1989. Broder [Bro86| related the task of
approximating the permanent of a matrix to that of uniformly generating
perfect matchings in a graph. This paper gives a randomized approximation
scheme for the latter problem by simulating it as a Markov chain whose states
are matchings in the graph. For this scheme to be efficient the Markov chain
must be rapidly mixing, i.e. converge to its stationary distribution in a short

time.

[JVV86] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of combi-
natorial structures from a uniform distribution. Theoretical Computer Science,
43:169-188, 1986. This paper considers the class of problems involving the ran-
dom generation of combinatorial structures from a uniform distribution. It is
shown that ezactly uniform generation of ‘efficiently verifiable’ combinatorial

structures is reducible to approximate counting.

[Kal92] G. Kalai. A subexponential randomized simplex algorithm. In Proc. 24th Ann.
ACM Symp. on Theory of Computing, pages 475-482, Victoria, B.C., Canada,
May 1992. A randomized variant of the simplex algorithm is presented that,
given a linear program with d variables and n constraints, uses an expected

subexponential number of arithmetic operations.

[Kam89] M. Kaminski. A note on probabilistically verifying integer and polynomial
products. Journal of the ACM, 36(1):845-876, 1989. The author describes
probabilistic algorithms for verifying the product of two n-bit integers in O(n)
bit operations, and for verifying the product of two polynomials of degree n
over integral domains in 4n 4 o(n) algebraic operations. The error probability

is is o(=) for any € > 0.

[Kar86| R. M. Karp. Combinatorics, complexity and randomness. Communications
of the ACM, 29(2):98-109, February 1986. This is the 1985 Turing Award
Lecture. It traces the development of combinatorial optimization and com-

putational complexity theory. It discusses probabilistic algorithms and prob-

125

www.manaraa.com

abilistic analysis of approximation algorithms for NP-complete optimization

problems.

[Kar90] R. M. Karp. An introduction to randomized algorithms. Technical Report
TR-90-024, Computer Science Division, University of California, Berkeley, CA

94704, 1990. A recent, comprehensive survey of randomized algorithms.

[Kar91] R. M. Karp. Probabilistic recurrence relations. In Proc. 23rd Ann. ACM
Symp. on Theory of Computing, pages 190-197, New Orleans, LA, May 1991.
In order to solve a problem instance of size ¢, a divide-and-conquer algorithm
invests an amount of work a(z) to break the problem into subproblems of sizes
hi(z), ho(z), -+, hr(z), and then proceeds to solve the subproblems. When the
h; are random variables — because of randomization within the algorithm or
because the instances to be solved are assumed to be drawn from a probability
distribution — the running time of the algorithm on instances of size z is also a
random variable T'(z). Karp gives several easy-to-apply methods for obtaining
fairly tight bounds on the upper tails of the probability distribution of T'(z),
and presents a number of typical applications of these bounds to the analysis
of algorithms. The proofs of the bounds are based on an interesting analysis

of optimal strategies in certain gambling games.

[Kar93| D. R. Karger. Global min-cuts in RNC, and other ramifications of a sim-
ple min-cut algorithm. In Proc. Fourth Ann. ACM-SIAM Symp. on Discrete
Algorithms, pages 21-30, Austin, TX, January 1993. Given a graph with n
vertices and m (possibly weighted) edges, the min-cut problem is to partition
the vertices into two non-empty sets S and T' so as to minimize the number of
edges crossing from S to T (if the graph is weighted, the problem is to mini-
mize the total weight of crossing edges). Karger gives an RNC algorithm for
the min-cut problem which runs in time O(log®n) on a CRCW PRAM with

’I’I’I,’I’I,2 log . PTOCESSOrS.

[Kel92] P. Kelsen. On the parallel complexity of computing a maximal independent
set in a hypergraph. In Proc. 2/th Ann. ACM Symp. on Theory of Computing,
pages 339-350, Victoria, B.C., Canada, May 1992. A maximal independent
set in a hypergraph is a subset of vertices that is maximal with respect to the

property of not containing any edge of the hypergraph. Kelsen derandomizes

126

www.manaraa.com

the randomized algorithm of Beame and Luby to obtain the first sublinear

time deterministic algorithm for hypergraphs with edges of size O(1).

[KGY89] M. Kharitonov, A. V. Goldberg, and M. Yung. Lower bounds for pseudoran-
dom number generators. In Proc. 30th Ann. IEEE Symp. on Foundations of
Computer Science, pages 242-247, Research Triangle Park, NC, October 1989.
IEEE Computer Society Press. A pseudorandom generator is a deterministic
algorithm that expands a truly random seed into a longer pseudorandom string.
Such generators play an important role in applications like cryptography. The
authors provide lower bounds on the computational resources needed for the

generation of pseudorandom strings.

[Kil88] J. Kilian. Zero-knowledge with log-space verifiers. In Proc. 29th Ann. IEFE
Symp. on Foundations of Computer Science, pages 25-34, 1988. Interactive
proof systems where the verifiers are assumed to be log-space probabilistic
automata are considered. The class of languages that are amenable to zero-

knowledge proofs with such verifiers is described.

[Kil90] J. Kilian. Uses of Randomness in Algorithms and Protocols. MIT Press, 1990.
Kilian’s Ph.D. dissertation, which was selected as an ACM Distinguished Dis-
sertation for the year 1989, is in three parts. The first part describes a ran-
domized algorithm to generate large prime numbers which have short, easily
verified certificates of primality. The algorithm provides short, deterministi-
cally verifiable proofs of primality for all but a vanishing fraction of prime
numbers. The second part considers the secure circuit evaluation problem in
which two parties wish to securely compute some function on their private
information. Kilian reduces this problem to an oblivious transfer protocol. The
third part of the dissertation generalizes probabilistic interactive proof sys-
tems to multiple provers. He shows that any language that has a multi-prover
interactive proof system has a zero-knowledge multi-prover interactive proof

system.

[Kil92] J. Kilian. A note on efficient zero-knowledge proofs and arguments. In Proc.
24th Ann. ACM Symp. on Theory of Computing, pages 723-732, Victoria,
B.C., Canada, May 1992. The standard definition of an interactive proof
requires that the verifier accept a correct proof and reject an incorrect assertion

with probability at least % This paper shows how to efficiently reduce the

127

www.manaraa.com

error probability to less than 27%, where k is some easily adjustable security

parameter.

[KL85] R. M. Karp and M. Luby. Monte-Carlo algorithms for planar multiterminal
reliability problems. Journal of Complexity, 1:45-64, 1985. They present a
general Monte-Carlo technique for obtaining approximate solutions of several
enumeration and reliability problems including counting the number of satis-
fying assignments of a propositional formula given in disjunctive normal form
(a #P-complete problem) and estimating the failure probability of a system.
An earlier version appeared in Proc. 2/th Ann. IEEE Symp. on Foundations
of Computer Science, 1983, pp. 56—64. See also [KLM89].

[KL93] R. Klein and A. Lingas. A linear-time randomized algorithm for the bounded
Voronoi diagram of a simple polygon. In Proc. Ninth Ann. ACM Symp. on
Computational Geometry, pages 124-132, San Diego, CA, May 1993. For a
polygon P, the bounded Voronoi diagram of P is a partition of P into regions
assigned to the vertices of P. Klein and Lingas present a randomized algo-
rithm that builds the bounded Voronoi diagram of a simple polygon in linear

expected time.

[KLM89] R. M. Karp, M. Luby, and N. Madras. Monte-Carlo approximation algorithms
for enumeration problems. Journal of Algorithms, 10:429-448, 1989. A com-
panion paper of [KL85]; an earlier version appeared in Proc. 2/th Ann. IEEE
Symp. on Foundations of Computer Science, 1983, pp. 56—64.

[KLMadH92] R. M. Karp, M. Luby, and F. Meyer auf der Heide. Efficient PRAM simulation
on a distributed memory machine. In Proc. 2/th Ann. ACM Symp. on Theory
of Computing, pages 318-326, Victoria, B.C., Canada, May 1992. They present
a randomized simulation of an nloglog(n)log*(n)-processor shared memory
machine (PRAM) on an n-processor distributed memory machine (DMM) with
optimal expected delay O(loglog(n)log*(n)) per step of simulation.

[KM93] D. Koller and N. Megiddo. Constructing small sample spaces satisfying given
constraints. In Proc. 25th Ann. ACM Symp. on Theory of Computing, pages
268-277, San Diego, CA, May 1993. The authors prove NP-completeness
for the problem of finding small sample spaces for joint distributions of n
discrete random variables satisfying a given set of constraints of the form

Pr(Fvent)p=ym. For the case where the constraints have a certain form and

128

www.manaraa.com

are consistent with a joint distribution of independent random variables, a
small sample space can be constructed in polynomial time; a result that can

be used to derandomize algorithms.

[KMO89] J. Kilian, S. Micali, and R. Ostrovsky. Minimum resource zero-knowledge
proof. In Proc. 30th Ann. IEEFE Symp. on Foundations of Computer Science,
pages 474-479, Oct 1989. The various resources such as number of envelopes,
number of oblivious transfers, and total amount of communication required
by zero-knowledge protocols are considered. The paper presents a technique
of executing k rounds of a protocol, which guarantees that any polynomial
number of NP-theorems can be proved non-interactively in zero-knowledge,
with the probability of accepting a false theorem below 1/2F. The main result
in this paper assumes the existence of trap-door permutations in order to

implement Oblivious Transfer Protocol.

[KMP77] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6:323-350, 1977. This paper presents a fast
deterministic algorithm for the problem of determining if a given pattern of
m symbols occurs in a text of length n. Their well-known algorithm runs in
time O(n 4+ m), making judicious use of a prefiz function, which for a given
pattern encapsulates knowledge about how the pattern matches against shifts
of itself.

[KMRZ93] E. Kushilevitz, Y. Mansour, M. O. Rabin, and D. Zuckerman. Lower bounds
for randomized mutual exclusion (extended abstract). In Proc. 25th Ann.
ACM Symp. on Theory of Computing, pages 154-163, San Diego, CA, May
1993. The authors establish a lower bound of Q(loglogn) bits on the size
of the shared variable required by randomized mutual exclusion algorithms
ensuring strong fairness. Slightly weakening the fairness condition results in

an exponential reduction in the size of the required shared variable.

[Knu73] D. E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Search-
ing. Addison-Wesley, 1973. This volume is a repository of sorting and searching
algorithms and their analysis. It contains a detailed and thorough treatment

of hashing.

[Ko82] K. Ko. Some observations on probabilistic algorithms and NP-Hard prob-
lemssmdnformation Processing Letters, 14(1):39-43, March 1982. Ko shows

129

www.manaraa.com

that if there is a probabilistic algorithm for an NP-hard problem with a small
“two-sided error”, then there is a probabilistic algorithm for any NP-complete

problem with a small “one-sided error”.

[Koz81] D. Kozen. Semantics of probabilistic programs. Journal of Computer and Sys-
tem Sciences, 22(3):328-350, 1981. A novel attempt at defining the semantics

of probabilistic programs. Two equivalent semantics are presented.

[Koz85] D. Kozen. A probabilistic PDL. Journal of Computer and System Sciences,
30(2):162-178, 1985. Kozen defines a formalism for reasoning about probabilis-
tic programs at the propositional level. Probabilistic Propositional Dynamic
Logic (PPDL), which has an arithmetic extension for each logical construct in
PDL, is presented along with some decision procedure formulas and a deduc-

tive calculus.

[KPRR92] Z. M. Kedem, K. V. Palem, M. O. Rabin, and A. Raghunathan. Efficient
program transformations for resilient parallel computation via randomization.
In Proc. 24th Ann. ACM Symp. on Theory of Computing, pages 306-317,
Victoria, B.C., Canada, May 1992. The authors show how randomization can
be used to automatically transform an arbitrary program written for an ideal
parallel machine to run on a completely asynchronous machine, such that the
resulting program is work and space efficient relative to the ideal program from

which it was derived.

[KPS85] R. M. Karp, N. Pippenger, and M. Sipser. A time randomness tradeoff. In AMS
Conf. on Probabilistic Computational Complexity, Durham, New Hampshire,
1985. This paper gives the first example of deterministic amplification using

expander graphs.

[KPUS8S| D. Krizanc, D. Peleg, and E. Upfal. A time-randomness tradeoffs for obliv-
ious message routing. In Proc. 20th Ann. ACM Symp. on Theory of Com-
puting, pages 93-102, 1988. Given the probability Q that an algorithm fails
to complete its task in T steps, a lower bound on the entropy of the random
source used in the algorithm is obtained. Near-optimal algorithms for oblivious

packet-routing in a bounded-degree network are included (see also [PU90]).

[KR87] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 31(2):249-260, March

130

www.manaraa.com

1987. An elegant randomized algorithm for the string matching problem is
presented. Mismatches reported by the algorithm are always correct, while a
claimed match may be erroneous with small probability. The algorithm uses a
fingerprinting function (on the finite field of mod p residues, where p is chosen
at random) to efficiently check for occurrences of the pattern string in the text
string. The running time of the algorithm is O((n—m-+1)m) in the worst case,
where the text is of length n and the pattern is of length m, but can be ex-
pected to run in time O(n+m) in practice. The probability that the algorithm
reports a false match is 1/n. Two-dimensional patterns are also considered.
An earlier version of this paper appeared as Technical Report TR-31-81, Aiken
Computation Lab, Harvard University, 1981.

[KR88] H. Karloff and P. Raghavan. Randomized algorithms and pseudorandom num-
bers. In Proc. 20th Ann. ACM Symp. on Theory of Computing, pages 310-321,
1988. Following up on Bach’s work [Bac91], this paper studies pseudo-random
substitutes (with small seeds) for purely random choices in sorting, selection
and oblivious message routing. An interesting result is that the linear con-
gruence pseudo-random number generator proposed by Knuth [Knu73] can

interact with some quicksort algorithms.

[Kro85] L. Kronsjo. Computational Complexity of Sequential and Parallel Algorithms.
John Wiley and Sons, New York, 1985. Chapter 5, Section 5.3, addresses prob-
abilistic algorithms. Rabin’s algorithms for primality and the Nearest Neigh-

bors problem are described.

[KRRI1] H. Karloft, Y. Rabani, and Y. Ravid. Lower bounds for randomized k-server
and motion planning. In Proc. 23rd Ann. ACM Symp. on Theory of Comput-
ing, pages 278-288, New Orleans, LA, May 1991. Lower bounds are proved
on the competitive ratio of randomized algorithms for the on-line k-server

problem and an on-line motion-planning problem.

[KRT93| M.-Y. Kao, J. H. Reif, and S. R. Tate. Searching in an unknown environment:
An optimal randomized algorithm for the cow-path problem. In Proc. Fourth
Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 441-447, Austin, TX,
January 1993. The first randomized algorithm for the w-lane cow-path prob-

lem, a problem of searching in an unknown environment, is given. The algo-

131

www.manaraa.com

rithm is optimal for w = 2 and evidence is supplied that it is optimal for larger

values of w.

[KS92] P. N. Klein and S. Sairam. A parallel randomized approximation scheme for
shortest paths. In Proc. 24th Ann. ACM Symp. on Theory of Computing,
pages 750-758, Victoria, B.C., Canada, May 1992. A randomized algorithm
is given for approximate shortest path computation in an undirected weighted

graph.

[KS93] D. R. Karger and C. Stein. An O(n?) algorithm for minimum cuts. In Proc.
25th Ann. ACM Symp. on Theory of Computing, pages 757-765, San Diego,
CA, May 1993. A minimum cut is a set of edges of minimum weight whose
removal disconnects a given graph. Karger and Stein give a strongly polynomial
randomized algorithm which finds a minimum cut with high probability in
O(n?log®n) time. Their algorithm can be implemented in RNC using only
n? processors, and is thus the first efficient RNC algorithm for the min-cut

problem.

[KST90] P. Klein, C. Stein, and E. Tardos. Leighton-Rao might be practical: Faster ap-
proximation algorithms for concurrent flow with uniform capacities. In Proc.
22nd Ann. ACM Symp. on Theory of Computing, pages 310-321, Baltimore,
MD, May 1990. They give an O(m?logm) expected-time randomized algo-
rithm for approximately solving the concurrent multicommodity flow problem

with uniform capacities.

[Kur87] S. A. Kurtz. A note on random polynomial time. SIAM Journal on Computing,
16(5):852-853, October 1987. Shows that PAN PP = BP P with probability 1
for independent random sets A and B. Here, A and B are sets consisting
of strings chosen at random, and P4 and PP are relativized to A and B

respectively. See [Gil77] for additional notation.

[KUWS6] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching in
Random NC. Combinatorica, 6:35-48, 1986. Perfect matching is a fundamental
problem that is not known to be solvable by an NC algorithm, i.e., a parallel
algorithm running in time polynomial in log » and using a number of processors
polynomial in n. This paper proves that perfect matching is in random NC
and gives a fast, parallel, randomized algorithm for finding a perfect matching

in a simple graph.
132

www.manaraa.com

[KVV90] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proc. 22nd Ann. ACM Symp. on Theory of
Computing, pages 352-358, Baltimore, MD, May 1990. An on-line algorithm
receives a sequence of requests and must respond to each request as soon as it
is received. In contrast, an off-line algorithm may wait until all requests have
been received before determining its responses. The authors give a simple,

randomized, optimal, on-line algorithm for bipartite matching.

[KW85] R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal
independent set problem. Journal of the ACM, 32(4):762-773, 1985. This
important paper showed that the maximal independent set problem for graphs
can be solved in polylogarithmic time using a polynomial number of processes
on a PRAM in which concurrent reads and writes are disallowed. They derive
their algorithm from a randomized one using a technique that has become

known as derandomization via k-wise independence.

[KZ88] R. M. Karp and Y. Zhang. A randomized parallel branch and bound procedure.
In Proc. 20th Ann. ACM Symp. on Theory of Computing, pages 290-300,
1988. A general technique assuming no special communication capabilities is

presented.

[Lak90] Y. N. Lakshman. On the complexity of computing a Grobner basis for the
radical of a zero dimensional ideal. In Proc. 22nd Ann. ACM Symp. on Theory
of Computing, pages 555-562, Baltimore, MD, May 1990. Lakshmanan shows
that if a system of polynomials fi, fs,..., f. in n variables with deg(f;) < d
over the rational numbers has only finitely many affine zeros, then all the
affine zeros can be determined in time polynomial in d” by a Las Vegas type

randomized algorithm.

[LC88] T.G. Lewis and C.R. Cook. Hashing for dynamic and static internal tables.
Computer, 21:45-56, 1988. The authors survey the classical hashing function
approach to information retrieval and show how general hashing techniques
exchange speed for memory. It is a tutorial paper that covers, among other
topics, dynamic and static hash tables, perfect hashing, and minimal perfect

hashing.

[Leh27] D. H. Lehmer. Bulletin of the American Mathematical Society, 33:327-340,
1927« Thisgpaper presents the Lucas-Lehmer heuristic for primality testing.

133

www.manaraa.com

[Leh82] D. Lehmann. On primality tests. SIAM Journal on Computing, 11(2), May
1982. Lehmann presents two algorithms for testing primality based on the ex-
tended Riemann hypothesis. The second algorithm is faster than that proposed
by [SS77] as it does not involve computing the Jacobi symbol.

[Lei92] T. Leighton. Methods for message routing on parallel machines. In Proc.
24th Ann. ACM Symp. on Theory of Computing, pages 77-96, Victoria, B.C.,
Canada, May 1992. This survey includes the topic of randomized wiring.

[LFKN90] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for in-
teractive proof systems. In Proc. 31st Ann. IEEE Symp. on Foundations of
Computer Science, pages 2-10, 1990. The authors present a new algebraic
technique for constructing IP systems and prove that every language in the

polynomial time hierarchy has an interactive proof system. This is a key paper

essential for proving IP = PSPACE [Sha92b] and MIP = NEXP [BFL90].

[LLM90] F. T. Leighton, D. Lisinski, and B. M. Maggs. Empirical evaluation of
randomly-wired multistage networks. In Proc. 1990 IEFEE Int’l. Conf. on
Computer Design, pages 380-385, 1990. This paper presents simulation re-
sults comparing the fault-tolerance, delay and other characteristics of butter-
flies, dilated butterflies and randomly-wired multibutterflies. Randomly-wired

multibutterflies perform better by many yardsticks.

[LLS87] D. Lichtenstein, N. Linial, and M. Saks. Imperfect random sources and discrete
controlled processes. In Proc. 19th Ann. ACM Symp. on Theory of Comput-
ing, pages 169-177, 1987. Imperfect sources are modeled by discrete control
processes where the output string of zeros and ones has been tampered with
by a controller who can specify certain bits. Several questions concerning the

membership of such a string in a prespecified set L are answered.

[LLW88| N. Linial, L. Lovész, and A. Wigderson. Rubber bands, convex embeddings,
and graph connectivity. Combinatorica, 8:91-102, 1988. Several probabilistic
algorithms for connectivity computation, both of the Monte Carlo and Las
Vegas variety, are given, as is a formalization of the connectivity problem in
terms of embedded graphs. Efficient parallel implementations are included.
(First appeared under the title “A physical interpretation of graph connec-
tivity and its algorithmic applications” in Proc. 27th Ann. IEEE Symp. on
Foundationsgof Computer Science, 1986, pp. 39-53.).

134

www.manaraa.com

[LM89] F. T. Leighton and B. M. Maggs. Expanders might be practical: fast algo-
rithms for routing around faults in multibutterflies. In Proc. 30th Ann. IEEE
Symp. on Foundations of Computer Science, pages 384-389, 1989. This paper
contains a simpler version of Upfal’s results [Upf89] and algorithms for routing

on randomized multibutterflies in the presence of faults.

[LM92a] F. T. Leighton and B. M. Maggs. Fast algorithms for routing around faults in
multibutterflies and randomly-wired splitter networks. IEEFE Trans. on Com-
puters, 41(5):578-587, May 1992. This paper describes simple deterministic
O(log N)-step algorithms for routing permutations of packets in multibutter-
flies and randomly-wired splitter networks. The algorithms are robust against

faults (even in the worst case) and are efficient from a practical point of view.

[LM92b] F. T. Leighton and B. M. Maggs. The role of randomness in the design of
interconnection networks. Information Processing, 1:291-305, 1992. A survey
of recent research on randomly wired interconnection networks, which have
been found to be exceptionally fault-tolerant and well-suited for both packet-

routing and circuit-switching applications.

[LMP*91] F. T. Leighton, F. Makedon, S. Plotkin, C. Stein, E. Tardos, and S. Tragoudas.
Fast approximation algorithms for multicommodity flow problems. In Proc.
23rd Ann. ACM Symp. on Theory of Computing, pages 101-111, New Orleans,
LA, May 1991. The paper presents randomized algorithms for approximately
solving the multicommodity flow problem. The algorithms run in polynomial

time with high probability.

[Lov79] L. Lovasz. On determinants, matchings and random algorithms. In L. Budach,
editor, Fundamentals of Computing Theory. Akademia-Verlag, Berlin, 1979.
Lovasz describes a probabilistic method for determining the perfect matching

in a simple graph, if one exists, using Tutte’s theorem.

[LP90] F. T. Leighton and C. G. Plaxton. A (fairly) simple circuit that (usually)
sorts. In Proc. 31st Ann. IEEFE Symp. on Foundations of Computer Science,
pages 264-274, 1990. A k-round tournament over n = 2* payers which has
very good sorting properties is introduced. There properties are then exploited

in a sorting network and two randomized algorithms.

135

www.manaraa.com

[LPV81] G. Lev, N. Pippenger, and L. Valiant. A fast parallel algorithm for routing in
permutation networks. IEEE Trans. on Computers, C-30(2):93-100, February
1981. This paper presents deterministic algorithms for routing in permuta-
tion networks. The fastest algorithms require global knowledge and Q(log® N)

parallel time.

[LR81] D. Lehmann and M. O. Rabin. On the advantage of free choice: A symmetric
and fully distributed solution to the Dining Philosophers problem (extended
abstract). In Proc. Eighth Ann. ACM Symp. on Principles of Programming
Languages, pages 133-138, 1981. A classic paper in the area of randomized
distributed algorithms. They show there is no deterministic, deadlock-free,
truly distributed and symmetric solution to the Dining Philosophers problem,

and describe a simple probabilistic alternative.

[LS91] D. Lapidot and A. Shamir. Fully parallelized multi-prover protocols for NEXP-
time. In Proc. 32nd Ann. IEEE Symp. on Foundations of Computer Science,
pages 13-18, 1991. This paper presents a one-round, zero-knowledge protocol
(without cryptographic assumptions) for every language in NEXP-time. In
a multi-prover protocol, several provers try to convince a polynomial-time
verifier that a string X belongs in language L. Provers cannot communicate
among themselves or observe communications between the verifier and other
provers. The protocol ensures that if X is not in I, the probability that the

verifier accepts the string as belonging to L is exponentially small.

[LS92] L. Lovasz and M. Simonovits. On the randomized complexity of volume and
diameter. In Proc. 38rd Ann. IEEE Symp. on Foundations of Computer Sci-
ence, pages 482-492, 1992. The authors present an O(n”log”n) algorithm to
approximate the volume of a convex body, and an O(n®logn) algorithm to

sample a point from the uniform distribution over a convex body.

[LS93] J. Lutz and W. Schmidt. Circuit size relative to pseudo-random oracles. Theo-
retical Computer Science, 107:95-120, 1993. Assuming pseudo-random oracles,
circuit-size complexity is compared with deterministic and non-deterministic

complexity. The paper also shows that for every p-space random oracle A and
almost every oracle A in EPSPACE, NP4 is not contained in SIZE4(2%")
for any real a < 1/3, and E“ is not contained in SIZE4(2"/n).

136

www.manaraa.com

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals problem.
ACM Trans. on Programming Languages and Systems, 4(3):382-401, July
1982. They proved that Byzantine agreement (the subject of Section 3.5)
cannot be reached unless fewer than one-third of the processes are faulty. This
result assumes that authentication, i.e., the crypting of messages to make them
unforgeable, is not used. With unforgeable messages, they show that the prob-
lem is solvable for any n > t > 0, where n is the total number of processes

and t is the number of faulty processes.

[Lut92] J. Lutz. On independent random oracles. Theoretical Computer Science,
92:301-307, 1992. This paper shows that for every random language A ¢ B,
P(A)NP(B) = BPP, where P(A) and P(B) are the class of languages in poly-

nomial time relativized to A and B. This improves on the results of [Kur87].

[LV92] J.-H. Lin and J. S. Vitter. e-approximations with minimum packing constraint
violation. In Proc. 24th Ann. ACM Symp. on Theory of Computing, pages
771-782, Victoria, B.C., Canada, May 1992. Efficient randomized and deter-
ministic algorithms are presented for transforming optimal solutions for a type
of relaxed integer linear program into provably good approximate solutions for

the corresponding NP-hard discrete optimization problem.

[MadH85] F. Meyer auf der Heide. Simulating probabilistic by determining algebraic
computation trees. Theoretical Computer Science, 41:325-330, 1985. This
paper overlaps with the paper “Nondeterministic Versus Probabilistic Linear
Search Algorithms,” Proc. 26th Ann. IEEE Symp. on Foundations of Com-
puter Science, 1985, pp. 65-73. It is shown that nondeterministic algorithms
are less complex than their probabilistic counterparts even when the proba-
bilistic choices are assigned zero cost and error is allowed in all computations.

The specific algorithms considered are linear search algorithms.

[MadH90] F. Meyer auf der Heide. Dynamic hashing strategies. In Proc. 15th Symp. on
Mathematical Foundations of Computer Science, Lecture Notes in Computer
Science, Vol. 452, pages 76-87, Banska Bystrica, Czechoslovakia, August 1990.
Springer-Verlag. This paper contains a survey of dynamic hashing techniques.
It evaluates hashing algorithms with respect to probability of collisions, bucket
sizes, evaluation time, and the time needed to construct a hash function. Par-

allel, distributed and sequential algorithms are considered.

137

www.manaraa.com

[MC87] D. Mitra and R. A. Cieslak. Randomized parallel communication on an exten-
sion of the Omega network. Journal of the ACM, 34(4):802-824, 1987. This
is an extension of Valiant and Aleliunas’ algorithm to eliminate the need for

scheduling. This algorithm also works on networks of fixed degree nodes.

[Meh82] K. Mehlhorn. On the program size of perfect and universal has functions. In
Proc. 23rd Ann. IEEE Symp. on Foundations of Computer Science, pages 170—
175, 1982. A must for readers interested in perfect hashing. It proves that for
n distinct keys from [0... N — 1], there exists a prime number p = O(n?In(N))
such that for any two keys z; and z;, z;(modp) # z;(modp). Further, a good
deterministic algorithm exists for finding p; it can be determined even more
efficiently using a randomized algorithm. Several other results concerning the

construction and length of perfect and universal hashing functions are proved.

[Meh84a)] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, vol-
ume 1 of EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, 1984. Volume 1 of this three-volume series is an excellent source
for searching and sorting algorithms. It contains sections on quicksort (Sec-

tion II1.1.3), perfect hashing (Section III.2.3)and universal hashing (Sections
111.2.3).

[Meh84b] K. Mehlhorn. Graph Algorithms and NP-Completeness, volume 2 of FATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1984. Section
IV.9.2 gives a probabilistic algorithm for graph connectivity and Section VI.8
deals, in part, with primality testing.

[Meh84c] K. Mehlhorn. Multi-dimensional searching and computational geometry, vol-
ume 3 of EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, 1984. This book is the last of three volmes. Chapter 7 is devoted to
multi-dimensional data structures and Chapter 8 to problems in computational

geometry.

[Mig80] M. Mignotte. Tests de primalite. Theoretical Computer Science, 12:109-117,
1980. Surveys the field of primality testing from a computational complexity

perspective. In French.

[Mil76] G. L. Miller. Reimann’s Hypothesis and test for primality. Journal of Com-
puter and System Sciences, 13:300-317, 1976. A seminal paper in the devel-

138

www.manaraa.com

opment of primality testing algorithms. This paper presents two algorithms
for primality testing. The first one runs in O(an) time. The second one, which
is actually a polynomial time algorithm (O(log*n)), assumes the Extended
Reimann Hypothesis. This paper also proves a certain class of functions is
computationally equivalent to factoring integers. (This paper first appeared in
Proc. Seventh Ann. ACM Symp. on Theory of Computing, 1975, pp. 234-239.).

[MMN93] J. Matousek, D. M. Mount, and N. S. Netanyahu. Efficient randomized algo-
rithms for the repeated median line estimator. In Proc. Fourth Ann. ACM-
SIAM Symp. on Discrete Algorithms, pages 74-82, Austin, TX, January 1993.
Computing a statistical estimator can be viewed as the problem of fitting a
straight line to a collection of n points in the plane. The breakdown point of an
estimator is the fraction of outlying data points (up to 50%) that may cause the
estimator to take on an arbitrarily large aberrant value. The authors present a
(not-so simple) O(nlog n) randomized expected time algorithm for the prob-
lem of computing a 50%-breakdown-point estimator, namely, the Siegel, or
repeated median, estimator. A simpler O(nlog®n) randomized algorithm for
the problem is also given, which the authors contend actually has O(nlogn)

expected time for “many realistic input distributions.”.

[MNN89] R. Motwani, J. Naor, and M. Naor. The probabilistic method yields determin-
istic parallel algorithms. In Proc. 30th Ann. IEEE Symp. on Foundations of
Computer Science, pages 8-13, Research Triangle Park, NC, Oct 1989. This
paper presents a method of converting randomized parallel algorithms into
deterministic parallel (NC) algorithms. Their approach is based on a par-
allel implementation of the method of conditional probabilities due to Joel
Spencer [Spe88|, which was originally introduced with the aim of converting
probabilistic proofs of existence of combinatorial structures into deterministic
algorithms that can actually construct these structures. Restrictions on the

technique to a certain class of randomized NC algorithms are discussed.

[MNT93] Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of
universal hashing. Theoretical Computer Science, 107:121-133, 1993. They
prove that any implementation of universal hashing from n-bit strings to m-

bit strings requires a time-space tradeoff of T'S = Q(nm).

139

www.manaraa.com

[Mon80] L. Monier. Evaluation and comparison of two efficient probabilistic primality
testing algorithms. Theoretical Computer Science, 12:97-108, 1980. Monier
presents an interesting comparison of the Miller-Rabin [Rab76] and Solovay-
Strassen [SS77| primality testing algorithms, showing that the former is always
more efficient than the latter. In the process, he proves that at least 3/4 of
the numbers in the set {1,2,...,n — 1} are witnesses to the compositeness of

n, for n composite. This strengthens the bound given in [Rab76].

[MOOY92] A. Mayer, Y. Ofek, R. Ostrovsky, and M. Yung. Self-stabilizing symmetry
breaking in constant-space. In Proc. 24th Ann. ACM Symp. on Theory of
Computing, pages 667678, Victoria, B.C., Canada, May 1992. A randomized
protocol is presented for the problem of self-stabilizing round-robin token man-

agement scheme on an anonymous bidirectional ring of identical processors.

[Mor82] S. Moran. On accepting density hierarchy in NP. STAM Journal on Computing,
11(2), May 1982. Moran investigates a characterization of sets in NP based
on accepting density of a polynomial time nondeterministic algorithm. The
accepting density is defined as the ratio between the accepting computations

and the total number of computations.

[MR89] G. L. Miller and J. H. Reif. Parallel tree contraction, Part 1: Fundamen-
tals. In S. Micali, editor, Advances in Computing Research 5: Randomness
and Computation. JAI Press, Greenwich, CT, 1989. They exhibit a random-
ized parallel algorithm for subtree isomorphism that uses O(logn) time and
O(n/log n) processors. This was the first polylog parallel algorithm for the
problem. See also the related paper “Parallel tree contraction and its applica-
tions,” in Proc. 26th Ann. IEEE Symp. on Foundations of Computer Science,
1985, pp. 478-489; and the companion paper [MR9I1].

[MR91] G. L. Miller and J. H. Reif. Parallel tree contraction, Part 2: Further Ap-
plications. SIAM Journal on Computing, 20(6):1128-1147, December 1991.
In this follow-up of [MR89], the authors present many applications of their

9

“parallel tree contraction technique,” including algorithms for subexpression

evaluation, tree and graph isomorphism, and building cononical forms of trees

and planar graphs.

[MS82] K. Mehlhorn and E. Schmidt. Las Vegas is better than determinism in VLSI
andpdistributed computing. In Proc. 14th Ann. ACM Symp. on Theory of

140

www.manaraa.com

Computing, pages 330-337, 1982. This paper demonstrates a problem where
the theoretical lower bounds for distributed deterministic solutions can be im-
proved using randomness. Let X = (z1,2s,...2,), Y = (y1,¥Y2,...Yn), Where
z; and y; are integers between 0 and 2" —1, be stored on two different sites. The
function f(X,Y)—which is defined to be 1 if there exists an ¢ such that z; = y;,
and 0 otherwise—is to be computed with minimum communication. This prob-

2

lem requires n* message bits in the deterministic case, but an O(nlog nlogn)

average running-time probabilistic algorithm is demonstrated.

[MS88] S. Micali and A. Shamir. An improvement of the Fiat-Shamir identifica-
tion and signature scheme. In Advances in Cryptology—-CRYPTO 88, Lecture
Notes in Computer Science, Vol. 403. Springer-Verlag, 1988. They speed up
zero-knowledge based identification and digital signature schemes of Fiat and
Shamir, which require only 10 to 30 modular multiplications per party. Their
improved scheme reduces the verifier’s complexity to less than 2 modular mul-

tiplications and leaves the prover’s complexity unchanged.

[MS92] B. M. Maggs and R. K. Sitaraman. Simple algorithms for routing on butterfly
networks with bounded queues. In Proc. 2/th Ann. ACM Symp. on Theory of
Computing, pages 150-161, Victoria, B.C., Canada, May 1992. The authors
present a simple, but non-pure, algorithm for routing a random problem on
a fully loaded N-input butterfly with bounded-size queues in O(log N) steps,
with high-probability.

[MSV85] F. Maffioli, M. G. Speranza, and C. Vercellis. Randomized algorithms. Com-
binatorial Optimization—Annotated Bibliographies, pages 89-105, 1985. This

is a useful annotated bibliography on randomized algorithms.

[MSW92] J. Matousek, M. Sharir, and E. Welzl. A subexponential bound for linear
programming. In Proc. Fighth Ann. ACM Symp. on Computational Geometry,
pages 1-8, Berlin, Germany, June 1992. They present a simple randomized

algorithm which solves linear programs with n constants and d variables in

expected O(nde*V (1)) time in the unit cost model.

[MT85] U. Manber and M. Tompa. Probabilistic, nondeterministic and alternating
decision trees. Journal of the ACM, 32(3):720-732, July 1985. This paper
compares lower bounds on the running times of algorithms that allow proba-

bilisticsynon-deterministic and alternating control on decision trees. Decision

141

www.manaraa.com

trees that allow internal randomization at the expense of a small probability
of error are shown to run no faster asymptotically than ordinary decision trees
for a collection of problems. An earlier version of this publication appeared in
Proc. 14th Ann. ACM Symp. on Theory of Computing, 1982, pp. 234-244.

[Mul] K. Mulmuley. Computational geometry: An introduction through randomized
algorithms. This book, due out in Fall 1993, presents a number of randomized
algorithms for problems in computational geometry. The book is meant to
serve as an introduction to computational geometry; the author chooses ran-
domized algorithms to do the job as they are usually simpler to understand
than their deterministic counterparts. The book is divided into two parts, ba-
sics and applications. Application areas considered include arrangements of
hyperplanes, convex polytopes, range search, and computer graphics. A chap-

ter on derandomization is also given.

[Mul89] K. Mulmuley. On obstructions in relation to a fixed view point. In Proc.
30th Ann. IEEE Symp. on Foundations of Computer Science, pages 592-597,
Oct 1989. Randomized algorithms for the following computational geometry
problems are given: (1) construction of levels of order 1 to k in an arrangement
of hyperplanes; (2) construction of Voronoi diagrams of order 1 to k, and (3)
hidden surface removal for a general scene. Both (1) and (2) are solved in any

dimension, and (3) allows intersection of curved surfaces.

[Mul91a] K. Mulmuley. Randomized multidimensional search trees: Dynamic sampling.
In Proc. Seventh Ann. ACM Symp. on Computational Geometry, pages 121-
131, North Conway, NH, June 1991. This paper develops a general technique,
called dynamic sampling, that can be used to “dynamize” randomized incre-
mental algorithms, so to allow additions as well as deletions of objects from

multidimensional search trees.

[Mul91b] K. Mulmuley. Randomized multidimensional search trees: Further results
in dynamic sampling. In Proc. 32nd Ann. IEEE Symp. on Foundations of
Computer Science, pages 216-227, 1991. This paper extends the approach
presented in [Mul91c] to Nearest Neighbors and other problems.

[Mul91c] K. Mulmuley. Randomized multidimensional search trees: Lazy balancing and
dynamic shuffling. In Proc. 32nd Ann. IEEE Symp. on Foundations of Com-
putersSciencespages 180-196, 1991. This paper presents a general randomized

142

www.manaraa.com

algorithm for problems such as the construction and management of Convex

Hulls and Voronoi Diagrams.

[Mul92] K. Mulmuley. Randomized geometric algorithms and pseudo-random genera-
tors. In Proc. 33rd Ann. IEEE Symp. on Foundations of Computer Science,
pages 90-100, 1992. This paper shows that a generalization of the familiar
linear congruential pseudo-random generator that uses O(logn) bits can be
substituted for the random source in many randomized incremental algorithms
used in computational geometry without affecting the order of complexity of
the expected running time, thereby reducing the number of truly random bits

needed.

[Mut93] S. Muthukrishnan. Detecting false matches in string matching algorithms. In
Proc. Fourth Int’l. Conf. on Combinatorial Pattern Matching, Lecture Notes
in Computer Science, Vol. 684, pages 164-178, Padova, Italy, 1993. Springer-
Verlag. The Karp and Rabin randomized string matching algorithm [KR87]
may report, with a small probability, a false match. Muthukrishnan presents a
parallel algorithm to detect the existence of such a false match. His algorithm
runs in O(1) time and uses O(n) CRCW PRAM processors, where n is the
length of the input text, and can be used to efficiently convert the Monte
Carlo Type string matching algorithm of Karp and Rabin into a Las Vegas
type algorithm. Muthukrishnan also considers the problem of detecting all

false matches.

[MV91] Y. Matias and U. Vishkin. Converting high probability into nearly constant
time — with applications to parallel hashing. In Proc. 23rd Ann. ACM Symp.
on Theory of Computing, pages 307-316, New Orleans, LA, May 1991. Ran-
domized parallel algorithms are given for constructing a perfect hash function
in expected polylogarithmic time and for generating a random permutation in

polylogarithmic time.

[MVN93| Y. Matias, J. S. Vitter, and W.-C. Ni. Dynamic generation of discrete random
variables. In Proc. Fourth Ann. ACM-SIAM Symp. on Discrete Algorithms,
pages 361-370, Austin, TX, January 1993. Efficient randomized algorithms are
given to generate a random variate distributed according to a dynamically set
of weights. The base version of each algorithm generates the discrete random

variate in O(log* N) expected time and updates a weight in O(2!°8" V) expected

143

www.manaraa.com

time in the worst case. It is shown how to reduce the update time to O(log* N)

amortized expected time.

[MVO91] A. Menezes, S. Vanstone, and T. Okamoto. Reducing elliptic curve logarithms
to logarithms in a finite field. In Proc. 23rd Ann. ACM Symp. on Theory of
Computing, pages 80-89, New Orleans, LA, May 1991. They present a prob-
abilistic polynomial-time algorithm for the elliptic curve logarithm problem,

the first subexponential-time, general-purpose algorithm for the problem.

[MVV87] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7:105-113, 1987. An elegant parallel, randomized
algorithm for finding a perfect matching in a simple graph based on Tutte’s
matrix is presented. The algorithm, which is made possible by a probabilistic
lemma called the isolation lemma, requires inversion of a single integer matrix

which can be parallelized.

[MW90] B. McKay and N. Wormald. Uniform generation of random graphs of moderate
degree. Journal of Algorithms, 11:52-67, 1990. A randomized algorithm is
given for generating k-regular graphs on n vertices, uniformly at random. The
expected running time of the algorithm is O(nk?) for k = O(n%) Special cases,

such as bipartite graphs with given degree sequences, are considered.

[MWHC93] B.S. Majewski, N.C. Wormald, G. Havas, and Z.J. Czech. Graphs, hyper-
graphs and hashing. In Proc. 19th Int’l. Workshop on Graph-Theoretic Con-
cepts in Computer Science (WG’93), Utrecht, The Netherlands, June 1993.
The authors generalize the method presented in [CHM92] by mapping the
input set into a hypergraph rather than a graph. This modification allows a
reduction in the size of the program, while maintaining all other features of

the method. Also, the hash function generation time is reduced.

[MZ86] N. Megiddo and E. Zemel. An O(nlogn) randomizing algorithm for the
weighted Euclidean 1-center problem. Journal of Algorithms, 7(3):358-368,
Sep 1986. A set of points p; = (z;,y;) and their weights w;, 1 <1 < n are given.
It is required to find a point p that minimizes the maximum first moment of
the weights of the p; s, i.e., the p that minimizes H(p) = M AX << w; d(p, p:)
where d(p, p;) is the magnitude of the distance between p and p;. A randomized
algorithm that does this with a small probability of error is presented.

144

www.manaraa.com

[Nat92] B. K. Natarajan. Probably approximate learning over classes of distributions.
SIAM Journal on Computing, 21(3):438-449, June 1992. Natarajan generalizes
the model of probably approximate learning proposed by Valiant [Val84b].

[Nis90] N. Nisan. Pseudorandom generators for space-bounded computations. In
Proc. 22nd Ann. ACM Symp. on Theory of Computing, pages 204-212, Balti-
more, MD, may 1990. Pseudorandom generators are constructed that convert
O(Slog R) truly random bits to R bits that appear random to any algorithm
that runs in SPACE(S). In particular, any randomized polynomial time algo-
rithm that runs in space S can be simulated using only O(Slogn) random
bits. Applications are given for “deterministic amplification,” the problem of

reducing the probability of error of randomized algorithms.

[Nis93] N. Nisan. On read-once vs. multiple access to randomness in logspace. The-
oretical Computer Science, 107:135-144, 1993. This paper shows that every
language accepted with bounded two-sided error by a read-once randomized
logspace machine can be accepted with zero error by a randomized logspace
machine with multiple access to the random bits. Also, the class of languages
accepted with two-sided error by a randomized logspace machine with multi-
ple access to the random bits is shown to be the class of languages that are in

logspace relative to almost every oracle.

[NN90] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions
and applications. In Proc. 22nd Ann. ACM Symp. on Theory of Computing,
pages 213-223, Baltimore, MD, May 1990. This paper shows an efficient
construction of a small probability space on n binary random variables such
that for every subset, its parity is either zero or one with “almost” equal
probability. Applications are shown in problems such as the derandomization
of algorithms and reducing the number of random bits required by certain

randomized algorithms.

[NS93] M. Naor and L. Stockmeyer. What can be computed locally? In Proc. 25th
Ann. ACM Symp. on Theory of Computing, pages 184-193, San Diego, CA,
May 1993. In the context of a distributed network, Naor and Stockmeyer
investigate Locally Checkable Labeling (LCL) problems, where the legality of a
labeling (e.g., coloring) can be checked locally; i.e., within time (or distance)

independent of the size of the network. Among their results they show that

145

www.manaraa.com

randomization cannot make an LCL problem local; i.e., if a problem has a

local randomized algorithm then it has a local deterministic algorithm.

INY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against
chosen cypher-text attack. In Proc. 22nd Ann. ACM Symp. on Theory of
Computing, pages 427-437, 1990. The authors show how to construct a public-
key cryptosystem secure against chosen ciphertest attacks, given a publi-key
cryptosystem secure against passive eavesdropping and a noninteractive zero-

knowledge proof system in the shared string model.

[INZ93| N. Nisan and D. Zuckerman. More deterministic simulation in logspace. In
Proc. 25th Ann. ACM Symp. on Theory of Computing, pages 235-244, San
Diego, CA, May 1993. It is shown that any randomized space('S) algorithm that
uses only poly(S) random bits can be simulated deterministically in space(S),
for S(n) > logn.

[Ore87] Y. Oren. On the cunning power of cheating verifiers: Some observations
about zero knowledge proofs. In Proc. 28th Ann. IEEE Symp. on Founda-
tions of Computer Science, pages 462—-471, 1987. Oren differentiates between
auziliary-input zero-knowledge and blackboz-simulation zero-knowledge. He
shows that all known zero-knowledge proofs are in the latter category. In ad-
dition, it is proved that blackboz-simulation zero-knowledge implies auziliary-

input knowledge, and that the latter corresponds to the original definition
given in [GMRA9].

[Pac87] J. Pachl. A lower bound for probabilistic distributed algorithms. Journal of Al-
gorithms, 8(1):53—-65, 1987. The minimum number of messages required to find
the extremal value of node ids in an asynchronous network deterministically
is O(n logn). This paper shows that this bound holds even for probabilistic

algorithms.

[Paz71] A. Paz. Introduction to Probabilistic Automata. Academic Press, 1971. Paz

develops a theory of equivalence among probabilistic automata.

[Pel90] M. Pellegrini. Stabbing and ray shooting in 3 dimensional space. In Proc. Sizth
Ann. ACM Symp. on Computational Geometry, pages 177-186, Berkeley, CA,
June 1990. The author presents a number of results about line stabbing and

ray shooting including the following two: (1) One can determine the the first

146

www.manaraa.com

triangles hit by m rays in a set of n disjoint triangles using a randomized
algorithm whose expected running time is O(m®/¢5n%/¢+% log® n 4+ mlog®n +
nlog nlog m); and (2) One can determine the first box hit by m rays in a set
of disjoint axis-oriented boxes using a randomized algorithm whose expected
running time is O(m®*/4~%n3/4+30 log* n 4+ mlog* n +nlog nlog m). Here § is any

constant greater than zero.

[Pel92] M. Pellegrini. Incidence and nearest neighbor problems for lines in 3-space. In
Proc. Eighth Ann. ACM Symp. on Computational Geometry, pages 130-137,
Berlin, Germany, June 1992. Given a set of n lines in 3-space, this paper
demonstrates a randomized algorithm that finds the shortest vertical segment
between any pair of lines in randomized expected time O(n%/°*¢) for every

€ > 0.

[Pel93] M. Pellegrini. On line missing polyhedral sets in 3-space (extended abstract).
In Proc. Ninth Ann. ACM Symp. on Computational Geometry, pages 19-28,
San Diego, CA, May 1993. Pellegrini gives an O(n'**¢) randomized expected
time algorithm that tests the separation property: does there exist a direction
v along which a set of n red lines can be translated away from a set of n blue

lines without collisions?

[Per85] K. Perry. Randomized Byzantine agreement. IEEE Trans. on Software Engi-
neering, SE-11(6):539-546, June 1985. Perry presents randomized algorithms
for Byzantine agreement that, like the algorithm of Rabin [Rab83], terminate
in an expected number of rounds which is a small constant independent of n
and t. As usual, n is the total number of processes and ¢ is the number of
faulty processes. However, Perry’s algorithm can tolerate a greater number of
faulty processes. He requires only that n > 6¢ + 1 in the asynchronous case

and n > 3t + 1 in the synchronous case.

[Pet82] G. L. Peterson. An O(nlog n) unidirectional algorithm for the circular extrema
problem. ACM Trans. on Programming Languages and Systems, 4(4):758—
762, October 1982. Peterson presents a deterministic distributed algorithm
for finding the largest of a set of n uniquely numbered processes in a ring. The
algorithm requires O(nlog n) messages in the worst case, and is unidirectional.

The number of processes is not initially known.

147

www.manaraa.com

[Pit89] L. Pitt. Probabilistic inductive inference. Journal of the ACM, 36(2):383-
433, 1989. Inductive inference machines construct total recursive functions
¢(z) given examples of the input and output of ¢. Probabilistic inductive
inference machines are permitted coin tosses while constructing ¢, and are
only required to construct ¢ with probability p, 0 < p < 1. This paper shows a
discrete hierarchy of inferability parameterized by p, for p < 1/2. Any machine
that can be constructed by probabilistic inference with p > 1/2 can also be

constructed deterministically.

[Pra75] V. R. Pratt. Every prime has a succinct certificate. SIAM Journal on Comput-
ing, 4(3):214-220, 1975. This paper proves, using the Lucas-Lehmer heuristic
for testing primeness, that just like composite numbers, the primeness of a

prime number n can be demonstrated by an O(log n) long proof.

[PS83] R. Paturi and J. Simon. Lower bounds on the time of probabilistic on-line
simulations. In Proc. 2/th Ann. IEEFE Symp. on Foundations of Computer
Science, pages 343-350, 1983. They show that coin tossing cannot compensate

for inadequate memory access.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM, 27(2):228-234, 1980. This paper is similar to their
1982 publication [LSP82], but contains a rigorous proof of the impossibility of
Byzantine agreement for the case n = 3, ¢ = 1. As usual, n is the total number

of processes and ¢ is the number of faulty processes.

[PU90] D. Peleg and E. Upfal. A time-randomness tradeoffs for oblivious routing.
SIAM Journal on Computing, 19:256-266, 1990. This is a companion paper
of [KPU8S|.

[Pug90] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Commu-

nications of the ACM, 33(6):668-676, June 1990. This paper presents skip
lists, a list in which a node may have a pointer to a node some number of
places ahead of it on the list. Such pointers, called “forward pointers”, there-
fore “skip” over intermediate nodes. A node with k& forward pointers is said
to be a level k node. Skip lists are probabilistic in that the level of a node is
chosen randomly with the property that a node’s ith forward pointer points

to the next node of level ¢ or higher. It is shown that skips lists can efficiently

148

www.manaraa.com

implement abstract data types such as dictionaries and ordered lists in that

the expected time to search for an item is O(log n).

[PZ86] A. Pnueli and L. Zuck. Verification of multiprocess probabilistic protocols. Dis-
tributed Computing, 1:53-72, 1986. They present a temporal logic for proving
liveness properties of probabilistic concurrent programs based on the notion

of “extreme fairness”.

[Rab63] M. O. Rabin. Probabilistic automata. Information and Control, 6:230-245,
1963. This is a seminal paper on the theory of probabilistic automata. Rabin
defined the notion of a language being accepted by a probabilistic automaton
relative to a cutpoint lambda. One of his key results was to show that there

exist finite state probabilistic automata that define non-regular languages.

[Rab76] M. O. Rabin. Probabilistic algorithms. In J.F. Traub, editor, Algorithms
and Complexity: New Directions and Recent Results, pages 21-39. Academic
Press, 1976. This classic paper on probabilistic algorithms features algorithms

for primality testing and nearest neighbors.

[Rab80a] M. O. Rabin. A probabilistic algorithm for testing primality. Journal of Num-
ber Theory, 12, 1980. Rabin’s paper introduces another celebrated algorithm
for fast, randomized primality testing. This paper is based on a different num-

ber theoretic property than that used by Solovay and Strassen [SST77].

[Rab80b] M. O. Rabin. Probabilistic algorithms in finite fields. SIAM Journal on Com-
puting, 9(2):273-280, May 1980. Rabin presents probabilistic algorithms for
finding an irreducible polynomial of degree n over a finite field, the roots of a

polynomial, and the irreducible factors of a polynomial.

[Rab83] M. O. Rabin. Randomized Byzantine Generals. In Proc. 24th Ann. IEEE
Symp. on Foundations of Computer Science, pages 403—-409, 1983. Rabin
presents a randomized algorithm for asynchronous Byzantine agreement that
terminates in a constant expected number of rounds. Cryptography is used to
simulate a trusted dealer that distributes random coin tosses before the start
of the algorithm. Rabin’s algorithm works only if less than one-tenth of all

processes are faulty.

[Rac82] C. Rackoff. Relativized questions involving probabilistic algorithms. Journal of
thesACM29(1):261-266, January 1982. Rackoff attempts to prove R # P by

149

www.manaraa.com

assuming P # N P and relativization (i.e., for a class of languages C, C4 is the
same as C except that one can answer questions concerning membership in A
in constant time). Interestingly, he proves that for some oracle A, P4 # NP4
and R4 # P4, and at the same time, for some other oracle B, PB £ NP5
and RB # PB. An earlier version of this paper appeared in Proc. 10th Ann.
ACM Symp. on Theory of Computing, 1978, pp. 338-342.

[Rag88] P. Raghavan. Probabilistic construction of deterministic algorithms: Approx-
imating packing integer problems. Journal of Computer and System Sciences,
37:130-143, 1988. Based on the derandomization technique of conditional
probabilities, Raghavan develops a methodology for converting the probabilis-
tic existence proof of a near-optimum integer solution to an integer program

into a deterministic approximation algorithm.

[Rag90] P. Raghavan. Lecture notes on randomized algorithms. Research Report RC
15340 (#68237), IBM T.J. Watson Research Center, January 1990. This Re-
search Report consists of lecture notes from a course taught by the author.
These notes give a thorough introduction to many randomized algorithms in
computational geometry, graph theory, VLSI, and networks. The basic math-
ematical background essential for understanding these algorithms is presented

in detail.

[Raj91a] S. Rajasekaran. k — k routing, k — k sorting, and cut through routing on the
mesh. Technical Report MS-CIS-91-93, Dept. of Computer and Information
Sciences, Univ. of Pennsylvania, Philadelphia, PA, 1991. This paper presents
randomized algorithms for k—k routing, k—k sorting, and cut through routing
on mesh connected computers. The time bounds of these algorithms improve

upon those of the best known algorithms prior to this paper.

[Raj91b] S. Rajasekaran. Randomized algorithms for packet routing on the mesh. Tech-
nical Report MS-CIS-91-92, Dept. of Computer and Information Sciences,
Univ. of Pennsylvania, Philadelphia, PA, 1991. Efficient randomized algo-
rithms for sore and forward, multipacket, and cut through routing of packets
on a mesh connected computer are surveyed. The expected running times and

queueing complexity of these algorithms are analyzed.

[Ram93] H. Ramesh. On traversing layered graphs on-line. In Proc. Fourth Ann. ACM-
SIAM Sympamwon Discrete Algorithms, pages 412-421, Austin, TX, January

150

www.manaraa.com

1993. A layered graph is a connected weighted graph whose vertices are par-
titioned into sets (i.e., layers) Lo, L1, Lo,..., and all edges connect vetices
in consecutive layers. Ramesh presents a randomized on-line algorithm for
traversing width-w layered graphs with a competitive ratio of O(w'®). His al-
gorithm represents the first polynomially competitive randomized algorithm

for layered graph traversal.

[Rei80] J. H. Reif. Logics for probabilistic programs. In Proc. 12th Ann. ACM Symp.
on Theory of Computing, 1980. Reif presents yet another attempt at a formal
logic, PROB-DL, for probabilistic programs.

[Rei81] R. Reischuk. A fast probabilistic parallel sorting algorithm. In Proc. 22nd
Ann. IEEFE Symp. on Foundations of Computer Science, pages 212-219, 1981.
Reischuk considers the problems of selecting k£ smallest elements out of a set
of n keys, and sorting the n elements using n processors in parallel. He shows
that the former can be done in constant time with probability 1 — 2_”‘% and
the later in O(log n) time. This achieves the information theoretic lower-bound
in terms of processor-time product as well as the optimal speed-up attainable

using 7 PTOCESSOrs.

[Rei85a] J. H. Reif. Optimal parallel algorithms for integer sorting and graph connec-
tivity. In Proc. 26th Ann. IEEFE Symp. on Foundations of Computer Science,
1985. This paper contains some results on the use of randomization in parallel

algorithms.

[Rei85b] R. Reischuk. Probabilistic parallel algorithms for sorting and selection. SIAM
Journal on Computing, 14(2):396-409, May 1985. This paper considers the
problems of selecting the k& smallest elements out of a set of n keys, and
sorting the n keys using n processors in parallel. Reischuk showed that the
former can be done in constant time with probability 1 — 2_”‘% and the later
in O(logn) time. Both algorithms meet the corresponding information theo-
retic lower bounds in terms of processor-time product as well as the optimal
speed-up attainable using n processors. An earlier version appeared as “A Fast
Probabilistic Parallel Sorting Algorithm” in Proc. 22nd Ann. IEEE Symp. on
Foundations of Computer Science, 1981, pp. 212-219.

[RP91] M. V. Ramakrishna and G. A. Portice. Perfect hashing functions for hardware
applicationssdn Proc. Seventh Int’l. Conf. on Data Engineering, April 1991. A

151

www.manaraa.com

hardware scheme for constructing an associative memory using a perfect hash
function is described. A simple trail and error scheme is used to find a perfect

hash function.

[RR89] S. Rajasekaran and J. H. Reif. Optimal and sublogarithmic time randomized
parallel sorting algorithm. SIAM Journal on Computing, 18(3):594-607, June
1989. This paper presents an optimal, randomized, parallel algorithm for
sorting n numbers in the range [1...n] on a parallel random access machine

that allows both concurrent reads and concurrent writes of a global memory.

[RS82] J. H. Reif and P. G. Spirakis. Real time resource allocation in distributed
systems. In Proc. First Ann. ACM Symp. on Principles of Distributed Com-
puting, pages 84-94, 1982. This paper considers a resource allocation problem
in distributed systems and provides real-time solutions in the form of two

probabilistic algorithms.

[RS84] J. H. Reif and P. G. Spirakis. Real time synchronization of interprocess com-
munication. ACM Trans. on Programming Languages and Systems, 6:215—
238, 1984. They present probabilistic distributed algorithms for the guard-
scheduling problem (Section 3.2) that guarantee real-time response. A prelim-
inary version of this paper appeared as “Distributed Algorithms for Synchro-
nizing Interprocess Communication in Real Time,” in Proc. 13th Ann. ACM

Symp. on Theory of Computing, 1981.

[RS89] J. H. Reif and S. Sen. Polling: A new random sampling technique for compu-
tational geometry. In Proc. 21st Ann. ACM Symp. on Theory of Computing,
pages 394-404, 1989. A randomized sampling technique called polling is in-
troduced. For the first time, this technique allows the calculation of ‘high
likelihood bounds’ rather than simply expected running time, in computa-
tional geometric randomized algorithms. The technique is illustrated using an

algorithm for the intersection of half-spaces in three dimensions.

[RS92] J. H. Reif and S. Sen. Optimal parallel randomized algorithms for three-
dimensional convex hulls and related problems. SIAM Journal on Computing,
21(3):466-485, June 1992. An optimal parallel randomized algorithm for com-
puting the intersection of half-spaces in 3-D is given. The algorithm provides
efficient solution techniques for convex hulls in 3-D and Vornoi diagrams of

pointysitesponga plane. An earlier version of the paper appeared as “Polling;:

152

www.manaraa.com

a new random sampling technique for computational geometry” in Proc. 21st
Ann. ACM Symp. on Theory of Computing, 1989, pp. 394-404.

[RSATS| R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-
tures and public key cryptosystems. Communications of the ACM, 21(2):120,
February 1978. The basics of trap-door functions and the famous RSA public

key cryptosystem are presented in this paper.

[Rub81] R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley &
Sons, 1981. This work is an in-depth look at the use of random sampling (the

Monte Carlo method) in the context of simulation and numerical integration.

[RV89] M. Rabin and Vazirani V. Maximum matchings in general graphs through
randomization. Journal of Algorithms, 10:557-567, 1989. This paper presents
a conceptually simple algorithm for maximal matching in a graph of n nodes
with complexity O(M(n)nloglogn), where M(n) is the number of operations

needed to multiply two n X n matrices.

[RW89] R. Raz and A. Wigderson. Probabilistic communication complexity of boolean
relations. In Proc. 30th Ann. IEEE Symp. on Foundations of Computer Sci-
ence, pages 562-567, 1989. Exponential gaps are demonstrated between de-
terministic and probabilistic complexity, and between the probabilistic com-

plexity of monotone and non-monotone relations.

[Sal69] A. Salomaa. Theory of Automata. Pergamon Press, 1969. Chapter 2 of
this book discusses probabilistic automata and develops a general theory of

stochastic languages.

[Sch78] J. Schwartz. Distributed synchronization of communicating sequential pro-
cesses. Technical report, DAI Research Report 56, University of Edinburgh,
1978. Schwartz presents a distributed algorithm for CSP output guards based
on priority ordering of processes. A probabilistic algorithm for output guards

is described in Section 3.2.

[Sch79] J. T. Schwartz. Probabilistic algorithms for verification of polynomial iden-
tities. In ISSAC ’79: Proc. Int’l. Symp. on Symbolic and Algebraic Compu-
tation, Lecture Notes in Computer Science, Vol. 72. Springer-Verlag, 1979.
This paper, which also appeared in Journal of the ACM, 1980, pp. 701-717,

153

www.manaraa.com

presents probabilistic methods for testing polynomial identities and properties

of systems of polynomials.

[Sch82] F. B. Schneider. Synchronization in distributed programs. ACM Trans.
on Programming Languages and Systems, 4(2):1982, April 1982. Schneider
presents a timestamp-based distributed algorithm for CSP output guards. A

probabilistic algorithm for output guards is described in Section 3.2.

[Sch84] M. R. Schroeder. Number Theory in Science and Communication with Appli-
cations in Cryptography, Physics, Biology, Digital Information and Comput-
ing. Springer-Verlag, 1984. Schroeder presents intuitive discussions on prime
numbers, their distribution, fractions, congruences, etc. Several applications of
number theory in such diverse fields as cryptography and Fraunhofer diffrac-
tion are discussed. A good source of basic number theory results for algorithm

designers.

[Sch88] A. Schonhage. Probabilistic computation of integer polynomial GCDs. Journal
of Algorithms, 9(3):365-371, September 1988. The GCD of two univariate
integer polynomials of degree < n, with their /' norms bounded by 27, is
shown to be reducible to GCD computation for long integers. A probabilistic
approach yields an expected complexity of O(n(n + h)'+°(1)) bit operations.

[Sch91] O. Schwarzkopf. Dynamic maintenance of geometric structures made easy.
In Proc. 32nd Ann. IEEE Symp. on Foundations of Computer Science, pages
180-196, 1991. Schwarzkopf presents a randomized algorithm for maintaining
Convex Hulls with m points that runs in expected time O(log m) per update
for dimensions 2 and 3, O(mlog m) for dimensions 4 and 5, and O(ml¥/2-1)

for dimensions greater than 5.

[Sei90] R. Seidel. Linear programming and convex hulls made easy. In Proc. Sizth
Ann. ACM Symp. on Computational Geometry, pages 211-215, Berkeley, CA,
June 1990. Seidel presents two simple randomized algorithms. One solves
linear programs involving m constraints in d variables in expected time O(m).
The other constructs convex hulls of n points in %%, d > 3 in expected time
O(nl9/2]). In both bounds, d is considered to be a constant.

[Sei91] R. Seidel. A simple and fast incremental randomized algorithm for comput-

ing trapezoidal decompositions and for triangulating polygons. Computational

154

www.manaraa.com

Geometry: Theory and Applications, 1:51-64, 1991. Seidel’s randomized algo-
rithm runs in O(nlog™® n) expected time and is simpler than the deterministic

O(n) algorithm due to B. Chazelle.

[Sei92] R. Seidel. On the all-pairs-shortest-path problem. In Proc. 2/th Ann. ACM
Symp. on Theory of Computing, pages 745-749, Victoria, B.C., Canada, May
1992. Given an undirected, unweighted n-vertex graph, a simple randomized
algorithm is presented that finds a shortest path between each pair of vertices
in expected O(M(n)log n) time, where M(n) is the time necessary to multiply

two m X m matrices of small integers.

[Sha92a) J. Shallit. Randomized algorithms in “primitive cultures”. SIGACT News,
23(4):77-80, 1992. Shallit, in a slightly tongue-in-cheek manner, traces back
some of the concepts of randomized algorithms to the native American society
of the Naskapi and the central African society of the Azande. Roots in the

works of Pierre Laplace and Lord Kelvin are also pointed out.

[Sha92b] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4), 1992. This paper
shows that the set of problems for which interactive protocols exist is precisely
the set of problems which are solvable within polynomial space on a Turing

machine.

[Sho93] V. Shoup. Fast construction of irreducible polynomials over finite fields. In
Proc. Fourth Ann. ACM-SIAM Symp. on Discrete Algorithms, pages 484—
492, Austin, TX, January 1993. A randomized algorithm is presented that
constructs an irreducible polynomial of given degree n over a finite field Fj.
It uses an expected number of O~ (n® + nlog q) operations in F,, where the

“soft-O” O~ indicates an implicit factor of (logn)°().

[Sie89] A. Siegel. On universal classes of fast high performance hash functions, their
time-space tradeoff, and their applications. In Proc. 30th Ann. IEEE Symp.
on Foundations of Computer Science, pages 20-25, Oct 1989. An algorithm
for constructing log n-wise independent hash functions that can be evaluated

in constant time is presented.

Sip8&8 M. Sipser. Expanders, randomness, or time versus space. Journal of Computer
1Y 1Y 1Y)) |Y 14

and System Sciences, 36, 1988. Contains a discussion on efficiently reducing

155

www.manaraa.com

the probability of error in randomized algorithms. It also describes a relation-
ship between pseudorandomness, time and space used by certain algorithms if

certain types of expander graphs can be explicitly constructed.

[Smi83| J. Smith. Public key cryptography. Byte, pages 198-218, January 1983. This
is a simple exposition of public key cryptography.

[Spe88] J. Spencer. Ten lectures on the probabilistic method. SIAM Journal on Com-
puting, 1988. Spencer presents a method of converting probabilistic proofs
of existence of certain combinatorial structures into deterministic algorithms

that construct these structures.

[Spi82] P. G. Spirakis. Probabilistic Algorithms, Algorithms with Random Inputs and
Random Combinatorial Structures. PhD thesis, (UMI Order Number DA
8216206) Harvard University, Cambridge, MA, 1982. This thesis puts forth
a new model, ‘Random Independence Systems’, for the probabilistic analysis
of deterministic algorithms with random inputs, i.e., algorithms for which the
space of all inputs has a known probability distribution. It also presents two
probabilistic algorithms with real time response for the problem of communi-

cation guard scheduling.

[Spr77] R. Sprugnoli. Perfect hash functions: A single probe retrieval method for
static sets. Communications of the ACM, 20:841-850, 1977. This is the first
discussion on perfect hashing; describes heuristics for constructing perfect hash

functions.

[SST77] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM
Journal on Computing, 6(1):84-85, March 1977. Another test for primality
based on the abundance of witnesses to compositeness of n is presented. The
test entails picking a random number ¢ (1 < ¢ < n) and computing ¢ =
a»1/2(" (mod n)), where —1 < ¢ < n — 2. If the Jacobi symbol § = (a/n)
equals ¢ then n is prime, else, if either ged(a,n) > 1 or § # ¢, decide n to be

composite. The second decision has less than % probability of being wrong.

[SS78] R. Solovay and V. Strassen. Erratum: A fast Monte-Carlo test for primality.
SIAM Journal on Computing, 7(1), Feb. 1978. A minor correction in the anal-
ysis presented in [SS77] is reported by the authors. The basic results of [SS77],
however, still hold.

156

www.manaraa.com

[SS90] J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash
functions. SIAM Journal on Computing, 19(5):775-786, 1990. This paper
gives, among other results, a lower bound for the average space required by
program for oblivious k-probe hash function. A probabilistic construction of
a family of oblivious k-probe hash function that nearly match this bound is

also given.

[SSS93] J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoft-Hoeffding bounds for ap-
plications with limited independence. In Proc. Fourth Ann. ACM-SIAM Symp.
on Discrete Algorithms, pages 331-340, Austin, TX, January 1993. Chernoft-
Hoeftding bounds are frequently used in the design and analysis of randomized
algorithms to bound the tail probabilities of the sums of bounded and inde-
pendent random variables. The authors give a simple technique which gives
slightly better bounds than these and which requires only limited independence

among the random variables.

[Sto85] L. Stockmeyer. On approximation algorithms for #P. SIAM Journal on Com-
puting, 14(4):849-861, 1985. The author explores the effect of approximation
and randomization on the complexity of counting problems (Valiant’s class
#P which has problems such as counting the number of perfect matchings in

a graph, the size of backtrack search trees, etc.).

[SV86] M. Santha and U. V. Vazirani. Generating quasi-random sequences from semi-
random sources. Journal of Computer and System Sciences, 33(1):75-87, April
1986. The authors introduce the notion of semi-random sources where the next
bit of the output is produced by an adversary by the flip of a coin of variable
bias. The adversary can look at the previously output bits, and use them to
set the bias in the coin. The bias, which helps model correlation among bits,

is constrained to be between two limits.

[TN91] T. Tokuyama and J. Nakano. Geometric algorithms for a minimum cost as-
signment problem. In Proc. Seventh Ann. ACM Symp. on Computational
Geometry, pages 262-271, North Conway, NH, June 1991. An efficient ran-
domized algorithm is given for the minimum cost A-assignment problem, which
is equivalent to the minimum weight one-to-many matching problem in a com-
plete bipartite graph ? = (A4, B). If A and B have n and k nodes respectively,
then the algorithm requires O(kn + k3°n°®°) expected time.

157

www.manaraa.com

[TO92] S. Toda and M. Ogiwara. Counting classes are at least as hard as the
polynomial-time hierarchy. SIAM Journal on Computing, 21(2):316-328, April
1992. Many counting classes are shown to be computationally as hard as the
polynomial time hierarchy, under a notion of randomized reducibility, unless

the polynomial-time hierarchy collapses.

[Tut47] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathe-
matical Society, 22:107-111, 1947. Let G(V, E) be a given simple graph where
V ={1,2,...n}. Associate a variable z,; with each edge ¢;; € F and define
the n X n matrix B = [b;;] as follows. If there is no edge between vertex ¢ and
vertex j them b;; = 0. Otherwise, b;; = z;; if ¢ > 7 and b;; = —z;; if ¢ < .
This paper proves that G has a perfect matching if and only if det(B) # 0.

[TW87] M. Tompa and H. Woll. Random self-reducibility and zero-knowledge inter-
active proofs of possession of information. In Proc. 28th Ann. IEEE Symp.
on Foundations of Computer Science, pages 472-482, 1987. Tompa and Woll
present a general theory, of which IP proofs for graph isomorphism, quadratic

residuosity and knowledge of discrete logarithms are special cases.

[Tze89] W. G. Tzeng. The equivalence and learning of probabilistic automata. In Proc.
30th Ann. IEEE Symp. on Foundations of Computer Science, pages 268-273,
1989. The equivalence problem of probabilistic automata is solvable in time
O((n1 + n2)*), where n; and n, are the number of states in the two automata.
The problem of learning probabilistic automata by a system of queries in

polynomial time is also presented.

[Upf89] E. Upfal. An O(log N) deterministic packet routing scheme. In Proc. 21st
Ann. ACM Symp. on Theory of Computing, pages 241-250, 1989. This paper
presents the first deterministic O(log N) permutation routing algorithm for
a multibutterfly network. A multibutterfly network is a special instance of a
delta network. Upfal also shows that P instances of the permutation problem

can be routed in O(log N + P) steps using a pipelining approach.

[UY91] J. D. Ullman and M. Yannakakis. High-probability parallel transitive closure
algorithms. SIAM Journal on Computing, 20(1):100-125, Feb 1991. Parallel
transitive closure algorithms are presented for the case when the graph is
sparse or only a single source information is desired. The algorithms presented

cangconvertedsto the Las Vegas type.

158

www.manaraa.com

[Val82] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal on
Computing, 11(2):350-361, May 1982. Valiant gives a distributed randomized
algorithm for routing packets from unique sources to unique destinations in
an n-dimensional binary cube in O(log N) time, where N = 2" is the number

of nodes in the network, with high probability.

[Val84a) L. G. Valiant. Short monotone formulae for the majority function. Journal of
Algorithms, 5:363-366, 1984. A probabilistic approximation of a deterministic
boolean function can yield simple circuits having a small proportion of inputs
that cause wrong outputs. Independent probabilistic approximations of the
same function can be combined to reduce the probability of error. In this
paper Valiant uses such a technique to obtain O(n®*?) size monotone formulas

that compute the majority function of n boolean variables.

[Val84b] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27:1134-1142, 1984. Valiant introduces a formal framework for the probabilis-

tic analysis of algorithms that learn sets defined on a predetermined universe.

[Val87] D. Valois. Algorithmes probabilistes: une anthologie. Master’s thesis,
Département d’informatique et de recherche opérationnelle, Université de
Montréal, 1987. In French, this paper covers a number of probabilistic al-
gorithms including matrix multiplication and inversion, manipulation of poly-

nomials, set equality, Byzantine Generals, and cryptography.

[Vaz87] U. V. Vazirani. Efficiency considerations in using semi-random sources. In
Proc. 19th Ann. ACM Symp. on Theory of Computing, pages 160-168, 1987.

Efficient algorithms for using semi-random sources are presented.

[VB81] L. Valiant and G. Brebner. Universal schemes for parallel communication.
In Proc. 13th Ann. ACM Symp. on Theory of Computing, pages 263-277,
1981. This paper extends Valiant’s message routing algorithm [Val82] to asyn-

chronous networks.

[vdS81] J. L. A. van de Snepscheut. Synchronous communication between asyn-
chronous components. Information Processing Letters, 13(3):127-130, Decem-
ber 1981. Snepscheut presents a distributed algorithm for CSP output guards
in which processes are related by a tree structure. A probabilistic algorithm

for output guards is described in Section 3.2.

159

www.manaraa.com

[VF90] J.S. Vitter and P. Flajolet. Average-case analysis of algorithms and data struc-
tures. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science,
Volume A: Algorithms and Complexity, chapter 9, pages 432-524. Elsevier
and The MIT Press (co-publishers), 1990. Vitter and Flajolet present ana-
lytic methods for average-case analysis of algorithms, with special emphasis
on the main algorithms and data structures used for processing nonnumeri-
cal data. Problems considered include sorting, searching, pattern matching,
register allocation, tree compaction, retrieval of multidimensional data, and
efficient access to large files stored on secondary memory. The main mathe-
matical tools used include generating functions (for recursively defined struc-
tures), statistics of inversion tables (for sorting algorithms), and valuations
on combinatorial structures (for trees and structures with tree-like recursive
decomposition, such as plane trees, multidimensional search trees, quicksort,

and algorithms for register allocation and tree compaction).

[Vis84] U. Vishkin. Randomized speed-ups in parallel computation. In Proc. 16th
Ann. ACM Symp. on Theory of Computing, pages 230-239, 1984. Vishkin
considers the problem of computing the position of each element of a linked
list, given the length n of the list. He presents a probabilistic algorithm for

this problem running time O(n/p + log nlog *n) using p processors.

[Vis90] S. Vishwanathan. Randomized online graph coloring. In Proc. 31st Ann.
IEEE Symp. on Foundations of Computer Science, pages 464-469, 1990. It
shown that randomization helps in coloring a graph in an online manner and
the randomized online algorithm is quite competitive with the best-known,

deterministic, off-line algorithm.

[VV85] U. V. Vagirani and V. V. Vazirani. Random polynomial time is equal to semi-
random polynomial time. In Proc. 26th Ann. IEEE Symp. on Foundations of
Computer Science, pages 417-428, 1985. This paper analyzes of the behavior
of randomized algorithms where perfectly random sources are substituted with
sources which have small bias and dependence. It shows that if a problem can
be solved by a polynomial-time Monte Carlo algorithm which has access to
a true source of randomness, the the same problem can be solved using an

arbitrarily weak semi-random source.

160

www.manaraa.com

[VV89] U. V. Vazirani and V. V. Vazirani. The two-processor scheduling problem is
in random NC. SIAM Journal on Computing, 18(6):1140-1148, 1989. An effi-
cient, randomized, parallel solution to the well-studied two-processor schedul-

ing problem is presented.

[vzG89] J. von zur Gathen. Testing permutation polynomials. In Proc. 30th Ann. IEEE
Symp. on Foundations of Computer Science, pages 88-98, Research Triangle
Park, NC, October 1989. IEEE Computer Society Press. The author presents
a randomized algorithm for testing whether a given polynomial over a finite

field with ¢ elements is a permutation polynomial in expected O(q) time.

[vzG91] J. von zur Gathen. Tests for permutation polynomials. SIAM Journal on
Computing, 20(3):591-602, June 1991. An element of a finite field F,[z] is
called a permutation polynomial if the mapping F, — F, induced by it is
bijective. A probabilistic algorithm for testing this property is given.

[vzGS92] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring
polynomials. In Proc. 24th Ann. ACM Symp. on Theory of Computing, pages
97-105, Victoria, B.C., Canada, May 1992. A probabilistic algorithm for fac-
toring univariate polynomials over finite fields is presented whose asymptotic

running time improves upon previous results.

[Wei78| B. W. Weide. Statistical Methods in Algorithmic Design and Analysis. PhD
thesis, Computer Science Department, Carnegie-Mellon University, Pitts-
burgh, PA, Report CMU-CS-78-142, 1978. An early survey of probabilistic

algorithms and analysis.

[Wel83] D. J. A. Welsh. Randomized algorithms. Discrete Appl. Math., 5:133-146,
1983. This is a well-written introduction to randomized algorithms. Welsh
discusses probabilistic algorithms for checking polynomial identities, primal-
ity, matrix and polynomial multiplication, and deciding whether a graph has
a perfect matching. The work also contains a nice discussion on random poly-

nomial time, random log-space, and the probabilistic hierarchy.

[WVZT90] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. A linear-time proba-
bilistic counting algorithm for database applications. ACM Trans. on Database
Systems, 15(2):208-229, Sept 1990. A probabilistic technique called linear

161

www.manaraa.com

counting, based on hashing, for counting the number of unique values in the

presence of duplicates is presented in this paper.

[Wyl79] J. C. Wyllie. The complexity of parallel computation. Technical Report TR 79-
387, Department of Computer Science, Cornell University, Ithaca, NY, 1979.
Wyllie conjectures that there is no optimal speed-up parallel algorithm for
n/log n processors for the problem: Given a linked list of length n, compute
the distance of each element of the linked list from the end of the list. However,
Vishkin showed that such optimal speed-up can be obtained via randomization

(see Section 4).

[Yao79] A. C. Yao. The complexity of pattern matching for a random string. SIAM
Journal on Computing, 8(3):368-387, August 1979. Yao proves that the mini-
mum average number of characters which need be examined in a random string
of length n for locating patterns of length m, in an alphabet with g symbols,
is O([log, (1= +2)]) if m <n < 2m and 0(“01#"&71) if n > 2m. This confirms

Inm

Knuth, Morris, and Pratt’s conjecture in [KMPT77].

[Yao83] A. C. Yao. Lower bounds by probabilistic arguments (extended abstract).
In Proc. 24th Ann. IEEE Symp. on Foundations of Computer Science, pages
420-428, 1983. Though not a paper on probabilistic algorithms, this paper
illustrates the power of probabilistic arguments by proving lower bounds for

three important problems.

[Yao91] A. C. Yao. Lower bounds to randomized algorithms for graph properties.
Journal of Computer and System Sciences, 42:267-287, 1991. Yao shows that
Q(n(log n)%) edges must be examined by any randomized algorithm (as op-
posed to £2(n?) by any deterministic algorithm) for determining any non-trivial
monotone graph property. An earlier version of this paper appeared in Proc.
28th Ann. IEEE Symp. on Foundations of Computer Science, 1987.

[YL91] M. Yannakakis and D. Lee. Testing finite state machines (extended abstract).
In Proc. 23rd Ann. ACM Symp. on Theory of Computing, pages 476-485,
New Orleans, LA, May 1991. A checking sequence for a finite state machine
A having n states is an input sequence that distinguishes A from all other
machines with n states. In addition to some other results on testing finite
state machines, the authors present a simple randomized polynomial time

algorithmythatyconstructs with high probability a checking sequence of length

162

www.manaraa.com

O(pn*logn), where p is the size of the input alphabet. (There is a lower bound
of pn® on the length of checking sequences; previous algorithms are exponential

in general or work only for special cases.).

[Zac88| S. Zachos. Probabilistic quantifiers and games. Journal of Computer and
System Sciences, 36:433-451, 1988. This paper attempts to give a uniform

picture of the various polynomial time complexity classes.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In ISSAC ’79:
Proc. Int’l. Symp. on Symbolic and Algebraic Computation, Lecture Notes in
Computer Science, Vol. 72. Springer-Verlag, 1979. Zippel discusses proba-
bilistic methods for testing polynomial identities and properties of systems of

polynomials.

[Zuc90] D. Zuckerman. General weak random sources. In Proc. 31st Ann. IEEE Symp.
on Foundations of Computer Science, pages 534-543, 1990. A pseudo-random
generator that depends only on a weak random source is exhibited. By a weak
random source it is meant that the source is asked only once for R random bits
and the source outputs an R-bit string such that no string has a probability
more than 27%F of being output, for some fixed § > 0. This paper shows

O(logn :
(g), or in

how to simulate RP using a string from a d-source in time n
polynomial time under the Generalized Paley Graph Conjecture. See [Zuc91]

for a correction to a result in this paper.

[Zuc91] D. Zuckerman. Simulating BPP using a general weak random source. In Proc.
32nd Ann. IEEFE Symp. on Foundations of Computer Science, pages 79-89,
1991. Using the weak random source defined in [Zuc90], this paper shows how
to simulate BPP and approximation algorithms in polynomial time using the

output from a such a source.

163

www.manaraa.com

